
Machine Learning-Augmented Optimization of Large
Bilevel and Two-stage Stochastic Programs:

Application to Cycling Network Design

Timothy C. Y. Chan, Bo Lin
Department of Mechanical & Industrial Engineering, University of Toronto, {tcychan, blin}@mie.utoronto.ca,

Shoshanna Saxe
Department of Civil & Mineral Engineering, University of Toronto, s.saxe@utoronto.ca,

Motivated by a cycling infrastructure planning application, we present a machine learning approach to

solving bilevel programs with a large number of independent followers, which as a special case includes

two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled

subset of followers and exploits a machine learning model to estimate the objective values of unsampled

followers. Unlike existing approaches, we embed machine learning model training into the optimization

problem, which allows us to employ follower features that cannot be represented using leader decisions. We

prove bounds on the optimality gap of the generated leader decision as measured by the original objective

that considers the full follower set. We develop follower sampling algorithms to tighten the bounds and a

representation learning approach to learn follower features, which are used as inputs to our machine learning

model. Through numerical studies, we show that our approach generates leader decisions of higher quality

compared to baselines. Finally, we perform a real-world case study in Toronto, Canada, where we solve

a cycling network design problem with over one million followers. Compared to the current practice, our

approach improves a transportation metric by 19.2% and can lead to a potential cost saving of $18M.

Key words : bilevel optimization; two-stage stochastic programming; machine learning; cycling network

design; sustainability.

1. Introduction

This paper is concerned with solving bilevel programs with a large number of followers

and where the feasible region of the leader is independent of the followers. A wide range

of decision problems can be modelled this way, including transportation network design

(Liu et al. 2022b) and pricing (Alizadeh et al. 2013), energy pricing (Zugno et al. 2013),

and portfolio optimization (Leal et al. 2020). The main challenge of solving such problems

stems from having to model a large number of follower problems to evaluate the quality of

the leader’s decision. Existing approaches predominantly rely on two strategies – sampling

and approximation – which trade off solution quality against computational tractability. In

1

Author: Machine Learning for Bilevel and Stochastic Programming
2

this paper, we leverage both strategies and propose a novel machine learning-augmented

optimization approach that is computationally tractable and enjoys theoretical solution

quality guarantees. Our method was driven by the need to solve a real cycling infrastructure

planning problem in Toronto, Canada that involves over one million followers.

1.1. Problem Motivation: Cycling Infrastructure Planning

Cycling has become an increasingly popular transportation mode due to its positive impact

on urban mobility, public health, and the environment (Kou et al. 2020). In fact, during

the COVID-19 pandemic, cycling popularity increased significantly since it represented a

low-cost and safe alternative to driving and public transit, and improved access to essential

services (Kraus and Koch 2021). However, cycling safety and comfort concerns have been

repeatedly identified as major factors that inhibit cycling uptake (Dill and McNeil 2016).

Building high-quality cycling infrastructure is among the most effective ways to alleviate

cycling stress (Buehler and Dill 2016) but in practice is highly political with limited tol-

erance for reallocation of road space to cycling infrastructure and limited budgets and

time to invest in construction. In this paper, we develop a bilevel optimization model to

optimize cycling infrastructure network design. Given a fixed budget, the model maximizes

“low-stress cycling accessibility”, defined as the total amount of “opportunities” (e.g., jobs)

reachable by individuals using streets that are safe for cycling. This metric has been shown

to be predictive of cycling mode choice (Imani et al. 2019, Lin et al. 2021) and is used to

assess existing and new cycling infrastructure (City of Toronto 2021a,b) in Toronto. In our

bilevel model, the leader is a transportation planner who designs a cycling network subject

to a infrastructure budget (e.g., 100 km), considering that cyclists will use the low-stress

network to travel to opportunities via shortest paths. The followers correspond to all pos-

sible origin-destination pairs between units of population and opportunity. The resulting

formulation for Toronto has over one million origin-destination pairs between 3,702 geo-

graphic units known as census dissemination areas (DAs). The resulting formulation is

very large and commercial solvers struggle to find a feasible solution before running out of

memory, motivating the development of our method.

1.2. Technical Challenge

Having a large set of followers S adds to the already difficult task of solving a bilevel

problem as it drastically increases the problem size. As we show later, the bilevel problem

Author: Machine Learning for Bilevel and Stochastic Programming
3

we consider generalizes two-stage stochastic programming when the leader and follower

objectives are identical. As a result, we can draw on approaches from both communities

(bilevel and two-stage stochastic programming) to deal with large S. Thus, in this paper,

the reader should think of “leader” in a bilevel program and “first-stage decision maker” in

a two-stage stochastic program as synonymous, and similarly for “follower” and “second-

stage decision maker”. As we discuss the bilevel or stochastic programming literature below,

we use the corresponding terminology. Two predominant strategies to dealing with large S

are: i) solving the problem with a small sample of S, and ii) approximating follower costs

without solving the follower problems.

Sampling a smaller follower set can be done via random sampling (Liu et al. 2022a, Lim

et al. 2021) or clustering (Dupačová et al. 2003, Hewitt et al. 2021, Bertsimas and Mundru

2023). Given a sample T ⊆ S, we can obtain a feasible leader solution by solving the reduced

problem, which improves computational tractability and solution interpretability due to

the reduced problem size. Furthermore, under suitable regularity assumptions, an optimal

solution to the reduced problem provides a bound on the optimal value and optimal leader

solution to the original problem (Römisch and Schultz 1991, Römisch and Wets 2007).

However, there is no theoretical guarantee on the performance of the optimal solution to

the reduced problem as measured by the original problem’s objective.

Regarding the second strategy, many different algorithms have been developed to approx-

imate the followers’ cost. Such approximations can be obtained by relaxing the constraint

that the followers’ decisions are optimal for their own objectives and progressively refining

the relaxed problem until the generated follower solutions are optimal. Refinement typi-

cally involves iteratively solving the followers’ problems, which can be accelerated through

parallelization. Algorithms along this direction include L-shaped methods (Birge and Lou-

veaux 2011), vertex enumeration (Candler and Townsley 1982), the Kuhn-Tucker approach

(Bard 2013), and penalty function methods (White and Anandalingam 1993). However,

these algorithms are generally not able to deal with huge S because i) the refinement pro-

cess can take a large number of iterations to converge and ii) the relaxed problem size still

increases as |S| increases, which is particularly problematic when the leader’s problem is

hard, for example, when it is non-convex. To overcome this issue, machine learning (ML)

methods have recently achieved encouraging performance on approximating the second-

stage cost as a function of first-stage decisions (Liu et al. 2021, Patel et al. 2022) and

Author: Machine Learning for Bilevel and Stochastic Programming
4

learning second-stage decision rules (Chen et al. 2008). However, the former requires iden-

tifying features that can be compactly represented using the leader’s decision, which is

practically challenging, while the latter may produce infeasible decisions when nontrivial

second-stage constraints are present. Moreover, neither method has optimality guarantees.

In this paper, we build on the ideas from both strategies. In particular, we consider

sampling a subset T ⊆ S. However, we also augment the overall objective function with

an estimate of the objective value of the unsampled followers, from S\T , using an ML

model. Unlike existing methods that use pre-trained ML models to map leader decisions

to objective values, our ML model takes follower features that are independent of leader

decisions. We embed the ML model training into the bilevel problem to link the ML

model with leader decisions. When optimizing leader decisions, the ML model is trained

on a dataset of the sampled followers on-the-fly. Simultaneous optimization and ML model

training enables derivation of new theoretical guarantees for the generated leader decisions.

Finally, to demonstrate our methodology, we apply it to a cycling infrastructure design

problem, completed in collaboration with the City of Toronto using real data.

1.3. Contributions

1. We develop a ML-augmented optimization model for solving bilevel optimization

problems with a large number of independent followers. Our objective function has an

exact component for a sampled subset of followers and an approximate component derived

from an ML model. Sampling improves computational tractability, while the ML model

ensures that the objective function better captures the impact of the leader’s decision on

the unsampled followers. The training of the ML model is embedded into the optimization

model to enable the use of predictive features that cannot be compactly represented using

leader decisions. We consider both parametric and non-parametric ML models, and develop

theoretical bounds on the quality of the generated solution as measured on the original

objective function with the full set of followers. Our method also represents a new way for

solving two-stage stochastic programming problems.

2. Informed by our theoretical insights, we develop practical strategies to enhance the

performance of the ML-augmented model, including i) follower sampling algorithms to

tighten the theoretical bounds, and ii) a representation learning method that automatically

learns follower features that are predictive of follower objective values. To the best of our

knowledge, this is the first application of representation learning to bilevel optimization.

Author: Machine Learning for Bilevel and Stochastic Programming
5

3. We demonstrate the effectiveness of our approach via computational studies on a

synthetic cycling network design problem. We show that i) our learned features are more

predictive of follower objective values compared to baseline features from the literature;

ii) our follower sampling algorithms further improve the ML models’ out-of-sample predic-

tion accuracy by a large margin compared to baseline sampling methods; iii) our strong

predictive performance translates into high-quality and stable leader decisions from the

ML-augmented model. The performance gap between our approach and sampling-based

models without the ML component is particularly large when the follower sample is small.

4. In collaboration with the City of Toronto, we perform a real-world case study on

cycling infrastructure planning. We solve a large-scale cycling network design problem

where we compare our model against i) purely sampling-based methods that do not use

ML and ii) a greedy expansion method that closely matches real-world practice. Compared

to i), our method can achieve accessibility improvements between 5.8–34.3%. Compared

to ii), our approach can increase accessibility by 19.2% on average. If we consider 100 km

of cycling infrastructure to be designed using a greedy method, our method can achieve a

similar level of accessibility using only 70 km, equivalent to $18M in potential cost savings.

All proofs are in the Electronic Companion.

2. Literature review

2.1. Integration of Machine Learning and Optimization

There has been tremendous growth in the combination of ML and optimization techniques.

“Predict, then optimize” is a common modeling paradigm that uses machine learning

models to estimate parameters in an optimization problem, which is then solved with those

estimates to obtain decisions (Elmachtoub and Grigas 2022). Recent progress has been

made in using ML models to prescribe decisions based on contextual features (Ban and

Rudin 2019, Bertsimas and Kallus 2020), and to build end-to-end optimization solvers

(Vinyals et al. 2015, Khalil et al. 2017). ML is also used to speed-up optimization algorithms

such as branch and bound (Khalil et al. 2016), cutting planes (Tang et al. 2020), and

column generation (Morabit et al. 2021). Closest to our work is the literature that integrates

pretrained ML models into the solution of optimization problems to map decision variables

to uncertain objective values (Mǐsić 2020, Liu et al. 2021, Patel et al. 2022). Our work differs

in that we integrate the ML model training directly into the optimization problem and use

predictive features that cannot be compactly represented using our decision variables.

Author: Machine Learning for Bilevel and Stochastic Programming
6

2.2. Scenario Reduction in Stochastic Programming

Scenario reduction has been extensively studied in the stochastic programming literature.

One stream of literature quantifies the similarity between individual scenarios and then

applies clustering methods to select a subset. Common measures include the cost difference

between single-scenario optimization problems (Keutchayan et al. 2023), the opportunity

cost of switching between scenarios (Hewitt et al. 2021), and the distance between scenario

feature vectors (Crainic et al. 2014). Another stream selects a scenario subset by minimizing

the discrepancy between the distributions described by the two sets as measured using the

Wasserstein distance (Bertsimas and Mundru 2023) and Fortet-Mourier metrics (Dupačová

et al. 2003). We differ from the existing literature in that instead of focusing on the stability

of the optimal solution, we provide solution quality guarantees for the leader’s solution

from our method. Recently, Zhang et al. (2023) proved a similar bound assuming that the

second-stage cost is Lipschitz in the first-stage decision. Our bounds do not require this

assumption and enjoy tightness guarantees which has not been considered.

2.3. Strategic Cycling Infrastructure Planning

Previous studies on cycling infrastructure planning have considered a variety of approaches.

Many papers greedily choose road segments to install cycling infrastructure using expert-

defined metrics (Lowry et al. 2012, Olmos et al. 2020). Optimization-based methods typ-

ically minimize the travel cost (Duthie and Unnikrishnan 2014, Mauttone et al. 2017),

maximize total utility (Liu et al. 2022a, Lim et al. 2021), or maximize total ridership (Liu

et al. 2022b) of a large number of origin-destination (OD) pairs. Due to the large problem

size, such models are usually solved with heuristics. To the best of our knowledge, only Liu

et al. (2022a), Lim et al. (2021), and Liu et al. (2022b) solve the problems to optimality

at a city scale by randomly sampling OD pairs or restricting the routes that each OD pair

can use. Our work adds to the literature by providing a computationally tractable method

that can solve larger problems without restrictions such as limited routes for each OD pair.

3. Model Preliminaries

In this section, we present the general bilevel problem of interest, a reduced version based

on sampling, and our proposed model. We will use the following notational conventions.

Vectors and matrices are denoted in bold, and sets are denoted in calligraphic font. We let

1(·) denote the indicator function, [x]+ =max{0, x} and [m] = {1,2, . . . ,m}.

Author: Machine Learning for Bilevel and Stochastic Programming
7

3.1. The Bilevel Model

The following is the bilevel optimization problem of interest:

minimize
x,y1,...,ym

f(x)+
∑
s∈S

qsg(x,ys) (1a)

subject to ys ∈ argmin
y∈Ys(x)

hs(x,y), ∀s∈ S (1b)

x∈X . (1c)

Let x denote the leader’s decision with feasible set X ⊆Rn1 and cost function f : Rn1→R.

Let S be a set of m followers, ys ∈ Rn2 be the decision of follower s ∈ S, g : Rn1+n2 → R

measure the cost of a follower’s decision, and qs ∈R+ be a nonnegative weight. To determine

the optimal decision of follower s, we assume the follower is optimizing an objective function

hs : Rn1+n2 → R subject to a non-empty feasible set Ys(x) ⊆ Rn2 that depends on the

leader’s decision. As a running example, Problem (1) is motivated by a network design

problem where the leader is a transportation planner who decides the locations of cycling

infrastructure subject to a budget (x) and followers are cyclists who travel (ys) to access

opportunities (qs). Functions f , g, and hs measure the leader’s cost, the percentage of

opportunities that are inaccessible, and cyclists’ routing preferences, respectively.

When g and hs are identical for all s∈ S, this problem generalizes a two-stage stochastic

program

minimize
x,y1,...,ym

f(x)+
∑
s∈S

qsg(x,ys)

subject to ys ∈Ys(x), ∀s∈ S

x∈X ,

where the decisions of the leader and followers correspond to the first-stage and second-

stage decisions, respectively, S is the set of second-stage scenarios, and qs (suitably nor-

malized) is the probability of realizing scenario s.

To simplify the notation, we write the bilevel problem as

min
x∈X

F (x), (2)

where

F (x) := f(x)+
∑
s∈S

qsGs(x) (3)

Author: Machine Learning for Bilevel and Stochastic Programming
8

and

Gs(x) :=min
ys

{
g(x,ys)

∣∣∣∣∣ys ∈ argmin
y∈Ys(x)

hs(y)

}
, ∀s∈ S. (4)

Let x∗ ∈ argminx∈X F (x) be an optimal solution to (2).

3.2. Reduced Model

Given a sampled follower set T ⊆ S, we consider the reduced problem

min
x∈X

F̄T (x), (5)

where

F̄T (x) := f(x)+
∑
t∈T

rtGt(x), (6)

Gt(x) is as defined in (4), and the weight assigned to scenario t ∈ T , rt ∈ R+, may be

different from qt, due to re-weighting. Let x̄T be an optimal solution to (5).

For two-stage stochastic programming, stability results have been established for prob-

lem (5). For example, it is possible to bound |F (x∗)− F̄T (x̄T)| (Römisch and Schultz 1991,

Bertsimas and Mundru 2023) and ∥x∗− x̄T ∥ (Römisch and Schultz 1991). However, bounds

on |F (x∗)−F (x̄T)|, which we develop using our ML-augmented model, have only recently

been studied (Zhang et al. 2023) and in a more restricted setting.

3.3. ML-Augmented Model

Given a sampled follower set T ⊆ S, we propose the following model

minimize
x∈X ,P∈P

f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

qsP (f s) (7a)

subject to
∑
t∈T

mt
∣∣P (f t)−Gt(x)

∣∣≤ L̄. (7b)

This formulation augments the reduced problem by integrating an ML model that predicts

the costs of the unsampled followers in S\T . The ML model is specified by P : Rξ → R,

which predicts the cost of follower s ∈ S based on a feature vector f s ∈ Rξ. We use P to

denote the function class of ML models, L̄ ∈R+ to be a user-defined upper bound on the

training loss, and mt to be a weight assigned to follower t for calculating the training loss

of P . The training of P on dataset {f t,Gt(x)}t∈T is embedded into the problem via the

training loss constraint (7b). We choose the L1 loss because i) it can be easily linearized,

Author: Machine Learning for Bilevel and Stochastic Programming
9

and ii) it is commonly used in the ML literature. However, our model is also compatible

with the L2 and L∞ losses. We present theoretical properties of our model using the L1 loss

in Section 4.2; the corresponding properties for the L2 and L∞ losses are given in EC.4.

Let Z(X ,P) denote the feasible region of problem (7). We can write problem (7) as

min
(x,P)∈Z(X ,P)

F̂T (x, P) (8)

where

F̂T (x, P) := f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

qsP (f s) . (9)

Problem (8) provides a general structure for our modeling approach. Its effectiveness

on a given problem depends on multiple factors: i) function class P, ii) weighting scheme

mt and upper bound L̄, iii) sample T , and iv) availability of predictive follower features

f s, s∈ S. We address the first three items in Section 4 and the fourth in Section 5.

4. Integrating a Prediction Model

In Section 4.1, we introduce two classes of prediction models – one non-parametric and one

parametric – that are compatible with our ML-augmented model. We provide theoretical

bounds on performance in Section 4.2. Finally, we present algorithms and discuss practical

implementation, based on insights from examining the bounds, in Section 4.3.

4.1. Function Classes

4.1.1. Non-parametric regression. For any fixed x, we consider a general class of

non-parametric regression models that can be written as

P (f s) =
∑
t∈T

wT (f
s, f t)Gt(x), (10)

where function wT : Rξ×ξ→ R+ calculates the weights assigned to the sampled followers.

Model (10) covers many non-parametric models, such as k-nearest neighbor regression,

locally weighted regression (Cleveland and Devlin 1988), and kernel regression (Parzen

1962). Model (10) can be viewed as a weighted sum of the training data and it does

not require estimating any model parameters. We thus do not require constraint (7b).

Equivalently, we can simply set L̄=∞ or mt = 0 for all t∈ T . Then, problem (8) becomes

minimize
x∈X

f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

∑
t∈T

wT (f
s, f t)Gt(x). (11)

In our theoretical results, we consider a general non-parametric regression model. How-

ever, for practical implementation, we focus on k-nearest neighbor regression.

Author: Machine Learning for Bilevel and Stochastic Programming
10

4.1.2. Parametric regression. Consider a parametric regression model P (f s;θ)

parameterized by θ ∈Θ. Then, problem (8) becomes

min
x∈X ,θ∈Θ

f(x)+
∑
t∈T

Gt(y)+
∑

s∈S\T

P (f s;θ)

∣∣∣∣∣∣
∑
t∈T

mt
1,S\T

∣∣Gt(y)−P (f t;θ)
∣∣≤ L̄

 , (12)

where mt
1,S\T is the number of followers in S\T whose nearest neighbor in T is t.

For model (12) to be effective, one should choose a function class that can be compactly

represented with θ and f . For example, a linear regression model P (f ;θ) = θ⊺f can be

incorporated using only ξ additional continuous decision variables θ ∈ Rξ. An additional

set of |T | variables and 2|T |+1 linear constraints are needed to linearize the L1 training

loss. Such a representation is tractable when ξ and |T | are small.

4.2. Theoretical Properties

4.2.1. Prediction model setup. We start by formally defining the prediction prob-

lem that is embedded into our ML-augmented model. For any fixed leader decision x, we

are interested in a regression problem defined in a feature space F ⊆Rξ and a target space

Gx ⊆R. We denote by ηx (· | f) the probability density function of the target variable given

a feature vector f . We regard Gs(x) as a random variable as the true mapping from features

to this target may not be deterministic. For example, consider a network design problem

where the follower’s cost is the length of the shortest path from an origin to a destination

using the network designed by the leader. If we use a one-dimensional binary feature that

is 1 if both the origin and destination are in downtown and 0 otherwise, then all downtown

OD pairs share the same feature value but with drastically different shortest path lengths.

4.2.2. Assumptions. Next, we introduce several assumptions that enable the deriva-

tion of our theoretical results in Sections 4.2.3 and 4.2.4.

Assumption 1 (Independence). For any followers s, s′ ∈ S, s ̸= s′ and leader decisions

x1,x2 ∈ X , the target (random) variables with distributions ηx1(· | f s) and ηx2(· | f s
′
) are

independent.

Assumption 2 (Predictivity). There exists a Ḡ ∈ R+ such that, for any fixed x ∈ X ,

f ∈F , and g drawn from ηx(· | f), there exists an interval [g, ḡ]⊆R such that ḡ−g≤ Ḡ and

g ∈ [g, ḡ] almost surely.

Author: Machine Learning for Bilevel and Stochastic Programming
11

Assumption 1 is standard in the ML literature and holds for a wide range of applications

where the original follower set S is independently sampled. For example, in transporta-

tion network design, OD pairs (followers) are usually independently sampled from survey

data (Lim et al. 2021) or ridership data (Liu et al. 2022a,b). In two-stage stochastic pro-

gramming, second-stage scenarios are usually taken from historical observations that can

be regarded as independent samples (Shapiro et al. 2009). Assumption 2 states that the

chosen features should be predictive of the follower’s cost. Given a fixed feature vector f ,

if the associated follower cost could vary wildly, it would be difficult for any prediction

model to achieve good performance. In contrast, if Assumption 2 holds and Ḡ is small,

then achieving a small prediction error is theoretically possible if the ML model is properly

chosen and trained. Note that for Theorems 1 and 2 to hold, Assumption 2 can be relaxed

if the cost function g is bounded. For example, in our cycling network design problem

(Section 6.1), the assumption holds with Ḡ= 1 as the follower cost function is bounded in

[0,1]. However, using predictive features helps to narrow the interval.

Assumption 3 (Continuity of Follower Cost). For any fixed x∈X , there exists a µ∈

R+ such that EG∼η(· | f) [G | f] is µ-Lipschitz continuous with respect to f .

Assumption 4 (Continuity of the Prediction Model). For any fixed θ ∈ Θ, there

exists a λ∈R+ such that P (f ;θ) is λ-Lipschitz continuous with respect to f .

Assumption 3 limits the change in the expected follower cost as a function of the change

in feature space. Similar assumptions are commonly made to derive stability results for

two-stage stochastic programming where the realized uncertain parameters are used as

follower features (Römisch and Wets 2007, Bertsimas and Mundru 2023). We propose

in Section 5 a deep learning method to learn follower features that satisfy a necessary

condition of this assumption. Assumption 4 limits the expressive power of P , which is

critical to avoid overfitting since P is trained on a small dataset (T). This can be enforced

by adding regularization constraints to Θ. For example, for linear regression, we can set

Θ= {θ ∈Rξ | ∥θ∥1 ≤ λ}. This assumption is needed only for parametric regression models.

Next, we present theoretical bounds for the quality of solutions from the non-parametric

(Section 4.2.3) and parametric regression-augmented models (Section 4.2.4), and then fol-

lower selection and model tuning methods that tighten the bounds (Section 4.3).

Author: Machine Learning for Bilevel and Stochastic Programming
12

4.2.3. Bound on non-parametric regression-augmented model solution.

Theorem 1. Given a follower sample T ⊆ S, let xNR
T be an optimal solution to problem

(11), dF be a distance metric in F , Q̄=maxs∈S\T qs, and wt
T =

∑
s∈S\T wT (f

s, f t) for t∈ T .

If Assumptions 1–3 hold, with probability at least 1− γ, F (xNR
T)−F (x∗)≤ENR

m (T) where

ENR
m (T) = 2µQ̄

∑
s∈S\T

∑
t∈T

wT (f
s, f t)dF(f

s, f t)+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(wt
T)

2

]
log(1/γ).

Theorem 1 bounds the optimality gap of the solution from the non-parametric regression-

augmented model as evaluated on the original problem. The first term corresponds to the

prediction bias and the second term corresponds to the variance and Bayes error. The bias

is proportional to the sum of the weighted distance from each f s to each f t. When the

sample size is fixed, the second term is controlled by wt
T . Note that

∑
t∈T wt

T = |S\T |, so

the second term is minimized when the wt
T are identical for all t∈ T , which follows from the

Cauchy-Schwarz inequality. The intuition is that if the followers in S\T are evenly assigned

to sample followers in T , then the overall prediction performance on S\T is less affected

by the random deviation of the individual cost of follower t, Gt(x), from its expected value.

4.2.4. Bound on parametric regression-augmented model solution.

Theorem 2. Given a follower sample T ⊆ S, xPR
T be the optimal solution to Problem (12),

ν(s) be the nearest neighbor of f s in {f t}t∈T , and mt
1,S\T =

∑
s∈S\T 1[ν(s) = t]. If Assump-

tions 1–4 hold, with probability at least 1− γ, F (xPR
T)−F (x∗)≤EPR

m (T , L̄) where

EPR
m (T , L̄) = 2Q̄L̄+2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, f ν(s))+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

Theorem 2 bounds the optimality gap of the leader’s decision from Problem (12) on the

original problem. The first term is controlled by the training loss L̄, while the second and

third terms are controlled by T . To reduce the second and third terms, T should be chosen

such that followers s ∈ S\T are not too far from its nearest neighbor in T (second term)

and the assignment of followers in S\T to followers in T should be even (third term).

4.3. Practical Implementation

4.3.1. Non-parametric regression-augmented model. Theorem 1 characterizes

the impact of follower selection on the quality of leader decisions from Problem (11).

Author: Machine Learning for Bilevel and Stochastic Programming
13

While one might be tempted to select T by minimizing ENR
m (T), solving this problem is

challenging due to the potentially complex function forms of the weighting function wT and

the variance term in ENR
m (T). We consider a special class of weighting functions inspired

by k-nearest neighbor regression (kNN), and propose a practical algorithm to select T by

minimizing the more tractable bias term in ENR
m (T) with constraints that aid in reducing

the variance term. Finally, we justify our approach by demonstrating the tightness of our

bound from Theorem 1 when our weighting function and follower sample is used.

Corollary 1. Let Tk(f s)⊆ T denote the k-nearest neighbors of f s in {f t}t∈T where k ∈
{1, . . . , |T |}, wT (f

s, f t) = 1[t∈ T (f s)]/k, and mt
k,S\T =

∑
s∈S\T 1[t∈ Tk(f s)], then

ENR
m (T) = 2µQ̄

k

∑
s∈S\T

∑
t∈Tk(fs)

dF(f
s, f t)+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(
mt

k,S\T

k
)2

]
log(1/γ).

Proposition 1. For any T ⊆ S and k ∈ {1, . . . , |T |− 1}, M(k,T)≤M(k+1,T) where

M(k,T) =
∑

s∈S\T

∑
t∈Tk(fs)

dF(f
s, f t).

Corollary 1 states that, when the kNN weighting function is used, the bias term in

ENR
m (T) is proportional to the sum of pairwise distances between unsampled followers

and their k-nearest neighbors in T . The bias-minimization problem thus becomes a p-

median problem, where p is an upper bound on the sample size imposed by the available

computational resources. Proposition 1 states that the bias term monotonically decreases

as k decreases, suggesting that the optimal value of k should be 1. Alternatively, we can

select k through cross-validation which consistently yields k = 1 for our cycling network

design problem. Motivated by these observations, we select the follower samples by solving

Tp,d = argmin
T ⊆S

{M(1,T) | |T | ≤ p, |S(t)| ≤ d,∀t∈ T } , (13)

where S(t) = {s∈ S\T | t∈ Tk(f s)} denotes the set of unsampled followers that are assigned

to the sampled follower t ∈ T , and d is a finite positive constant such that ⌈m/p⌉ ≤ d≤
β⌈m/p⌉ for some β ≥ 1. Problem (13) is a balanced p-median problem (Carlsson and Jones

2022). The objective function minimizes the bias term in ENR(T). The constraint |T | ≤ p

ensures that at most p followers are selected. The constraints |S(t)| ≤ d for t ∈ T induce

more even assignment of the unsampled followers to the sampled followers so that the

variance term is reduced. The next theorem justifies this sampling approach.

Author: Machine Learning for Bilevel and Stochastic Programming
14

Theorem 3. If (f 1, f 2, . . . , fm) is a sequence of i.i.d random vectors in [0,1]ξ following a

continuous density function, ξ ≥ 2, p=max{1, αm(ξ−1)/ξ} for some α∈ (0,1], ⌈m/p⌉ ≤ d≤
β⌈m/p⌉ for some β ≥ 1, and γ ∈ (0,1], then

lim
m→∞

1

m
ENR

m (Tp,d) = 0.

Theorem 3 states that even if ENR
m (T) involves the sum of |S\T | terms, it grows sub-

linearly in |S|, which sheds light on the tightness of the bound. While Theorem 1 holds

for any T ⊆ S, this result holds for Tp,d, highlighting the importance of intelligent sample

selection. Theorem 3 requires the sample size to increase at a rate of m(ξ−1)/ξ, which hints

at the practical need to consider larger samples for larger problems. We show in Section 6

that increasing the sample size generally leads to decisions of higher quality. The rate of

increase depends on ξ. We thus should use compact follower features whenever possible.

If high-dimensional features (ξ large) are necessary, the sample size would grow almost

linearly in |S|. But we would still expect a significant improvement in computation time

when the leader/follower problems are non-convex (e.g., involve discrete decisions), since

computation time would grow exponentially in problem size. Finally, the assumption of

f 1, f 2 . . . , fm being in [0,1]ξ is nonrestrictive as we can create this structure using the min-

max standardization.

4.3.2. Parametric regression. The bound in Theorem 2 is controlled by i) the fol-

lower sample T and ii) the value of L̄. To select T , we consider minimizing the more

tractable bias term in EPR
m (T) for reasons discussed in the previous section. Since the bias

terms in EPR
m (T) and ENR

m (T) are identical, we also use Tp,d as defined in Problem (13)

as our follower sample. Regarding L̄, choosing a small value will reduce the bound, but

could lead to overfitting or even worse, render problem (12) infeasible. We view L̄ as a

hyperparameter that should be tuned and provide an approach for doing so in EC.7.5.

Theorem 4. If (f 1, f 2, . . . , fm) is a sequence of i.i.d. random vectors in [0,1]ξ following a

continuous density function, where ξ ≥ 2, p =max{1, αm(ξ−1)/ξ} for some α ∈ (0,1], and

⌈m/p⌉ ≤ d≤ β⌈m/p⌉ for some β ≥ 1, L̄ is a finite positive constant, then

lim
m→∞

1

m
EPR

m (Tp,d, L̄) = 0.

Similar to Theorem 3, Theorem 4 comments on the tightness of the bound in Theorem 2

when the follower samples are selected using our approach.

Author: Machine Learning for Bilevel and Stochastic Programming
15

5. Learning Follower Representations

In this section, we first present a representation learning framework that maps a follower

set S to a ξ-dimensional feature space (Sections 5.1–5.2) and then provide a theoretical

justification for it (Section 5.3). The learned follower features are used as inputs to the ML

model embedded in problems (11) and (12), and to quantify the similarity between followers

to aid follower sampling in problem (13). An alternative approach, commonly used in

scenario reduction, is to represent each scenario using the realized second-stage parameters.

However, in a general bilevel formulation, such representations may be high-dimensional

and uninformative. For example, when the follower problem is a shortest path problem

between two nodes in a road network (Section 6.1), such a representation corresponds to

the right-hand side of the flow-conservation constraints whose dimensionality equals the

number of nodes in the road network and whose entries are mostly zeros. We thus propose

a new method to learn a compact and informative follower representation, which better

suits our ML-augmented model as discussed following Theorem 3.

As presented in Algorithm 1, our framework has two steps. In the first step, we construct

a relationship graph R, where each node represents one follower and each edge is assigned a

weight reflecting the similarity between the followers. In the second step, we adopt a graph

embedding algorithm to map each node in R to a feature space F ⊆Rξ. We emphasize that

this framework is compatible with any relationship graph and graph embedding algorithms,

providing flexibility to tailor the framework to deal with different applications.

5.1. Relationship Graph Construction

The core of the relationship graph construction is defining a weight for each edge that

reflects the similarity between followers. Many metrics have been proposed in the literature,

with most focusing on the “opportunity cost” of switching between scenarios. For example,

Keutchayan et al. (2023) and Hewitt et al. (2021) define the opportunity cost of applying

the first-stage decision that is optimal to scenario t in scenario s as d(s, t) = Gs(xt∗) −

Gs(xs∗) where xs∗ and xt∗ denote the optimal first-stage solutions obtained by solving the

single-scenario version of problem (2) with scenarios s and t, respectively. Building on a

similar idea, Bertsimas and Mundru (2023) define a symmetric metric for scenarios s and t

as (d(s, t)+ d(t, s))/2. While these opportunity cost-based metrics have been shown to be

Author: Machine Learning for Bilevel and Stochastic Programming
16

Algorithm 1 An Algorithm for Follower Embedding

Input: Number of leader decisions nsim; Embedding size ξ; Walk per follower nwalk; Walk

length lwalk; Window size w; Sub-exponential function Φ; SkipGram oracle.

Output: Follower features {f s}s∈S .

1: Generate nsim leader decisions {xi ∈X}nsim
i=1 . ▷ Relationship graph construction

2: for i= 1 to nsim do

3: Calculate Gs
i :=Gs(xi) for all s∈ S.

4: Construct a graph R= (S,A), where A= {(s, t) |s, t∈ S, s ̸= t}.

5: Calculate weight πst =Φ[
∑nsim

i=1 −|Gs
i −Gt

i|/nsim] for all (s, t)∈A.

6: Initialize walk container C. ▷ Graph embedding

7: for i= 1 to nwalk do

8: for s∈ S do

9: Initialize the current node vcurr = s and the walk W s
i = [vcurr].

10: for j = 1 to lwalk do

11: Sample the next node vnext ∼ Pr(v= t) = πvcurrt/(
∑

s∈S πvcurrs).

12: Update W s
i ← [W s

i ; vnext] and vcurr← vnext.

13: Update C ← C ∪{W s
i }.

14: Learn follower features {f s}s∈S← SkipGram(C,w)

effective and are compatible with our framework, they require solving |S| single-scenario
versions of problem (2), which is computationally expensive when S is huge.

Motivated by the fact that evaluating followers’ costs given a leader’s solution is compu-

tationally cheaper, we propose a data-driven approach that quantifies follower similarity

based on their costs under some sampled leader solutions. Specifically, we first randomly

sample nsim leader decisions {xi ∈ X}nsim
i=1 . For each sampled xi, we calculate the costs

Gs
i :=Gs(xi) for all followers s ∈ S by solving the associated follower problems. We then

define the weight of the edge between followers s, t∈ S as

πst := Φ

[
1

nsim

nsim∑
i=1

−|Gs
i −Gt

i|

]
(14)

where Φ : R→ R+ is a sub-exponential function whose target space is R+ as πst will be

used as sampling weights in the follower embedding algorithm (Section 5.2). Function Φ

needs to be sub-exponential for the theoretical properties described in Section 5.3 to hold.

Author: Machine Learning for Bilevel and Stochastic Programming
17

5.2. Follower Embedding

OnceR is constructed, we adapt the DeepWalk algorithm proposed by Perozzi et al. (2014)

to learn vector representations of the nodes in R. We first generate a set of random walks

in the relationship graph, and then apply the SkipGram algorithm (Mikolov et al. 2013),

which was designed for learning word embeddings, to learn node features treating each

node and each random walk as a word and a sentence, respectively. Unlike Perozzi et al.

(2014), who generate random walks by uniformly sampling nodes connected to the current

node, we generate random walks according to the weights assigned to edges incident to the

current node. So, followers that yield similar results under the sampled leader decisions are

likely to appear in a same walk, and thus will be close to each other in the feature space.

Let f(· ;λ) : S →F denote a neural network parameterized by λ∈Λ, f s := f(s;λ) be the

follower embeddings generated by f for followers s ∈ S, and Ws
i be the set of consecutive

nodes in walk W s
i for i∈ [nsim] and s∈ S. The training of the neural network is to solve

maximize
λ∈Λ

nwalk∏
i=1

n∏
j=1

∏
(s,t)∈Wj

i

pst(λ) (15)

where

pst(λ) =
exp [(f s)⊺f t]∑
k∈S exp [(f

s)⊺fk]
(16)

is the predicted probability of observing node t after node s in the random walks. Prob-

lem (15) can be regarded as a maximum likelihood estimation problem. Learning node

(word) embeddings that are predictive of the next node (word) in a sequence is a fundamen-

tal idea that has directly contributed to recent successes in natural language processing,

including Word2Vec (Mikolov et al. 2013), BERT (Devlin et al. 2019), and GPT (Radford

et al. 2018). To our knowledge, this paper is the first to apply this idea to learn embeddings

for optimization problems and use them to accelerate the solution of optimization models.

5.3. Theoretical Justification for using the DeepWalk framework

Lemma 1. Let λ∗ be an optimal solution to Problem (15), then for any (s, t)∈ S ×S

lim
nwalk→∞

pst(λ∗) =
πst∑

k∈[n] π
sk
. (17)

Author: Machine Learning for Bilevel and Stochastic Programming
18

Proposition 2. Let dF(·, ·) denote a function that calculates the cosine distance between

two vectors in F and πst be as defined in equation (14). If pst(λ∗) = πst/
∑

k∈[n] π
sk for any

(s, t)∈ S ×S, then there exists a constant µ′ ∈R+ such that, for any (s, t)∈ S ×S,

1

nsim

∑
i∈[nsim]

|Gs
i −Gt

i| ≤ µ′dF(f
s, f t) (18)

Lemma 1 states that, as nwalk goes to infinity, the predicted probability of observing t∈ S
after s ∈ S in a walk converges to the sampling probability defined in Algorithm 1. Since

the SkipGram algorithm is highly scalable with open-sourced libraries, such as Gensim

(Řeh̊uřek and Sojka 2010), we can set nwalk to a very large number so that the “prediction

errors” are negligible. Proposition 2 states that when the sampling and predicted probabil-

ities are identical and when the edge weights are defined properly, our learned embeddings

satisfy inequality (18), which is a necessary condition for Assumption 3.

6. Computational Study: Algorithm Performance on Synthetic Cycling
Network Design Problem

In this section, we validate the effectiveness of our ML-augmented model with our repre-

sentation learning framework on the cycling network design problem described in Section

1.1. We introduce the problem and its formulation in Section 6.1. We present two exper-

iments to validate the predictive power of the learned follower features and the value of

integrating an ML model in the optimization problem in Sections 6.2 and 6.3, respectively.

6.1. Maximum Accessibility Network Design Problem

The goal of the maximum accessibility network design problem (MaxANDP) is to design a

cycling network subject to a fixed budget such that the total accessibility of a given set of

OD pairs, denoted by S, is maximized. Such a set may be defined based on geographical

units (Imani et al. 2019, Lim et al. 2021) or ridership data (Liu et al. 2022a). Existing

studies have proposed various metrics to measure accessibility, mostly focusing on first

finding one or more routes between each OD pair using the designed network and then

calculating the accessibility based on the selected routes. Such measures have been shown

to be correlated with travel behavior data (Imani et al. 2019) and have been widely adopted

to assess the performance of cycling networks (Vale et al. 2016).

Let G = (N ,E) be a directed graph where E is the set of edges and N is the set of

nodes, corresponding to road segments and intersections, respectively. Each edge (i, j)∈ E

Author: Machine Learning for Bilevel and Stochastic Programming
19

is assigned a travel time tij. We denote by E+(i) and E−(i) the sets of incoming and

outgoing edges of node i, respectively. Edges and nodes are partitioned into high-stress and

low-stress sets according to a cycling stress assessment based on road geometry, existing

infrastructure, and vehicle traffic conditions (Landis et al. 1997, Harkey et al. 1998, Furth

et al. 2016). We assume that cyclists prefer cycling on low-stress roads over high-stress

roads. Sets with subscripts h and l indicate the high-stress and low-stress subsets of the

original set, respectively. High-stress edges (i, j) ∈ Eh and nodes i ∈Nh are assigned costs

cij and bi, respectively, corresponding to the costs of turning them into low-stress through

building new infrastructure such as cycle tracks or traffic lights.

Let x ∈ {0,1}|Eh| and z ∈ {0,1}|Nh|, respectively, denote the edge selection and node

selection variables (referred to as network design decisions), whose components are 1 if that

edge or node is chosen for the installation of infrastructure that makes it low stress. Edge

and node selections are subject to budgets Bedge and Bnode, respectively. Let y
od ∈ {0,1}|E|

denote the routing decision associated with OD pair (o, d)∈ S. The routing problem on a

network specified by x and z is characterized by an objective function hod(x,z, ·) : {0,1}|E|→

R and a feasible set Yod(x,z) ⊆ {0,1}|E|. A function g(x,z, ·) : {0,1}|E| → R+ is used to

calculate the accessibility of each OD pair based on the selected route(s). Each OD pair is

weighted by a constant qod ∈R+ (e.g., population). The MaxANDP is formulated as

maximize
x,z,yod

∑
(o,d)∈S

qodg(x,z,yod) (19a)

subject to yod ∈ argmin
y∈Yod(x,z)

hod(x,z,y), (o, d)∈ S (19b)

c⊺x≤Bedge (19c)

b⊺z≤Bnode (19d)

x∈ {0,1}|Eh|,z∈ {0,1}|Nh|, (19e)

where c and b indicate cost vectors for high-stress edges and nodes, respectively. The

objective function (19a) maximizes total cycling accessibility. Constraints (19b) ensure that

the selected routes are optimal for the OD pairs’ objective functions. Constraints (19c)

and (19d) enforce budgets on the network design decisions.

To apply problem (19), the accessibility measure (specified by g) and the routing problem

(specified by hod and Yod) should be carefully chosen based on recent travel behavior data

Author: Machine Learning for Bilevel and Stochastic Programming
20

in the studied area (Geurs and Van Wee 2004). To illustrate our methodology, we consider

two problems: i) one that uses location-based accessibility measures and shortest-path

routing problems, and ii) one proposed by Liu et al. (2022a) that employs a utility-based

accessibility measure and discrete route choice models. We refer readers to Liu et al. (2022a)

for the latter problem. We briefly describe the former problem next.

Location-based accessibility measures use a decreasing function of the travel time from

origin to destination, namely an impedance function, to model the dampening effect of

separation (Iacono et al. 2010). We consider a piecewise linear impedance function

g(yod) =

1−β1t

⊺yod, if t⊺yod ∈ [0, T1)

1−β1T1−β2

(
t⊺yod−T1

)
, if t⊺yod ∈ [T1, T2)

0, if t⊺yod ≥ T2,

(20)

where t indicates a vector of edge travel times, T1, T2 ∈ R+ are breakpoints, and β1, β2 ∈

R+ are penalty factors for [0, T1) and [T1, T2), respectively. This function can be used to

approximate commonly used impedance functions, including negative exponential, rectan-

gular, and linear functions (visualized in EC.7.2). While we consider two breakpoints for

simplicity, the formulation can be easily generalized to account for more.

We use the level of traffic stress (LTS) metric (Furth et al. 2016) to formulate the routing

problems. Let A be the node-edge matrix describing the flow-balance constraints on G,

and eod be a vector whose oth and dth entries are 1 and −1, respectively, with all other

entries 0. Given network design (x,z), the routing problem for (o, d)∈ S is formulated as

minimize
yod∈{0,1}|E|

t⊺yod (21a)

subject to Ayod = eod (21b)

yodij ≤ xij, ∀(i, j)∈ Eh (21c)

yodij ≤ xwl + zi, ∀i∈Nh, (i, j)∈ E−h (i), (w, l)∈ E
−
h (i)∪E

+
h (i). (21d)

Objective function (21a) minimizes the travel time. Constraints (21b) direct one unit of

flow from o to d. Constraints (21c) ensure that a currently high-stress edge can be used

only if it is selected. Constraints (21d) guarantee that a currently high-stress node can be

crossed only if either the node is selected or all high-stress edges that are connected to

this node are selected. This is an exact representation of the intersection LTS calculation

Author: Machine Learning for Bilevel and Stochastic Programming
21

scheme that assigns the low-stress label to a node if traffic signals are installed or all

incident roads are low-stress (Imani et al. 2019). To ensure problem (21) is feasible, we add

a low-stress link from o to d and set its travel time to T2. In doing so, the travel time is

set to T2 when the destination is unreachable using the low-stress network, corresponding

to zero accessibility, as defined in equation (20). The full formulation is in EC.5.

6.2. Experiment 1: Predicting OD-Pair Accessibility Using ML Models

In this experiment, we randomly generate network designs and calculate the accessibility

for each OD pair under each design. The accessibility associated with each network design

constitutes a dataset on which we perform train-test data splits, train ML models to predict

OD-pair accessibility, and evaluate their prediction performance. Our goal is to i) validate

the effectiveness of our follower sampling method in improving the prediction accuracy and

ii) compare the predictive power of our learned features and baseline features.

Data generation and model evaluation. For accessibility, we consider three location-

based measures that employ exponential (EXP), linear (LIN), and rectangular (REC)

impedance functions, and one utility-based (UT) measure from Liu et al. (2019). For

each accessibility measure, we randomly generate 3,000 network designs and calculate the

accessibility of every follower under each design. We use the mean absolute error normalized

by the average total accessibility over the 3,000 network designs (normalized MAE) as our

evaluation metric. We vary the training sample size between 1%–5% of all OD pairs.

Baselines. We consider ML models that are compatible with our ML-augmented model,

including kNN, lasso, and ridge regression. For follower sampling, we consider the balanced

p-median sampling as introduced in Section 4.3 (BMED), uniform sampling (UNI), and p-

center sampling (CEN). Since the BMED and CEN problems are both NP-hard, we adapt

heuristics from Boutilier and Chan (2020) and Gonzalez (1985) to solve them (see EC.7.4).

As a result, all methods involve randomness. We thus apply each sampling method 10 times

with different random seeds and report the mean and confidence interval of the normalized

MAE. To our knowledge, no follower feature learning method has been proposed in the

literature. Since accessibility is a function of the travel time from origin to destination, we

employ the travel time predictors proposed by Liu et al. (2021), which are well-grounded in

the literature on predicting TSP objective value, as a baseline. The details on the baseline

features and ML models are given in EC.7.3 and EC.7.7, respectively.

Author: Machine Learning for Bilevel and Stochastic Programming
22

Effectiveness of the follower selection algorithm. As illustrated in Figure 1, when

using the REP features, our sampling method BMED typically achieves the lowest normal-

ized MAE, regardless of the accessibility measures, ML models, and sample sizes. Especially

when the sample size is extremely small (i.e., 1%), the gap between BMED and UNI/CEN

can be over 20% (LIN-kNN), demonstrating the value of our bounds in guiding the sample

selection. In addition, BMED sampling generally has less variation in normalized MAE

compared to UNI and CEN. These observations also hold for TSP features (see EC.7.9).

Figure 1 Mean normalized MAE (± 95% confidence interval) over 3,000 network designs. Sampling methods are

coded by colors. Features are coded by line types and markers. For readability, we only present the best

sampling method for TSP. Details are in EC.7.9

Predictive power of the learned features. We observe that ML models generally

perform better with the REP features than with the TSP features. As presented in Figure

1, when using kNN, the REP features outperform the TSP features by a large margin (e.g.

over 44.0%, 50.7%, 21.1%, and 73.0% for EXP, LIN, REC, and UT, respectively, when the

sample size is 1%). The performance gap between REP and TSP features is larger when

using the kNN model because, as illustrated in Secition 5, the REP features are constructed

Author: Machine Learning for Bilevel and Stochastic Programming
23

to pull together followers with “similar” costs in the feature space, which favors the kNN

model. When using lasso and ridge regression, the REP features still outperform the TSP

features, highlighting the robustness of our representation learning approach. For example,

when the sample size is 1%, the normalized MAE of the REP features is 33.5–47.0%

lower than that of the TSP features. For additional robustness, we tested combining REP

and TSP features, but found that REP alone performed the best. In other applications,

combining REP features with domain-specific features could improve performance.

6.3. Experiment 2: Generating Leader Decisions using ML-augmented Models

Next, we investigate the extent to which our learned features and our follower samples

can assist the ML-augmented model in generating high-quality leader (i.e., transportation

planner) decisions. We consider the reduced model, kNN-augmented model, and linear

regression-augmented model using BMED and UNI samples, totaling six methods for gen-

erating leader decisions. Results for CEN samples are in EC.7.10, as they are similar to

UNI samples. We create 12 problem instances on the synthetic network (one for each pair

of design budget and accessibility measure). We vary the sample size from 1% to 5%. To

calculate the optimality gap of the derived leader decisions on the original problem, we

adapt the Benders approach from Magnanti et al. (1986) to solve synthetic instances to

optimality. The algorithm and its acceleration strategies are in EC.6. We apply each model

10 times using 10 samples generated with different random seeds and report the average

optimality gap of the leader decisions on the original problem.

The effectiveness of the follower selection algorithm. From Figure 2, our first

observation is that using BMED samples enhances the performance of both the ML-

augmented models and the reduced model. Significant performance gaps are observed for

the two ML-augmented models in all problem instances. Using the BMED samples on

average reduces the optimality gap by 70.5% and 54.2% for the kNN-augmented and linear

regression-augmented models, respectively. For the reduced model, our sampling strategy

is competitive with or better than uniform sampling, with an average reduction of 28.7% in

optimality gap. These results highlight the importance of sample selection for both models.

The effectiveness of the ML-augmented models. Our second observation is that

the best ML-augmented models (kNN-MED or REG-MED) generally outperform the

reduced models by a large margin, especially when the sample size is extremely small (1%).

Author: Machine Learning for Bilevel and Stochastic Programming
24

Figure 2 Mean optimality gap (± 95% confidence interval) of leader decisions on the 12 problem instances.

Problem instances are named as “accessibility measure”-“budget” and the solution methods are named

as “model”-“sampling method”. Optimality gap = |F (x∗)− F (x′)|/F (x∗) where x∗ and x′ are leader

decisions from Benders decomposition and a sampling-based method, respectively.

This is particularly important because implementation of these models on large real-world

case studies (see Section 7) are only possible when the sample size is very small (< 0.2% in

our case study). Moreover, the confidence intervals of the best ML-augmented model are

generally narrower than those of the reduced model. The ML component helps to capture

the impact of leader decisions on unsampled followers, leading to solutions of higher quality

and stability. We note that the ML-augmented models may not outperform the reduced

models when using the UNI samples. This is expected as the ML model is trained on an

extremely small sample, necessitating careful sample selection.

The efficiency of the ML-augmented models. Figure 3 presents the solution time of

the three models with BMED samples. In general, the solution time of all models increases

as the sample size increases. The kNN-augmented model and the reduced model require

similar solution time as the former is a re-weighted version of the latter and does not

have any additional decision variables. The linear regression-augmented model generally

Author: Machine Learning for Bilevel and Stochastic Programming
25

Figure 3 Mean solution time (± 95% confidence interval) on 12 instances. Problem instances are named as

“accessibility measure”-“budget” and the solution methods are named as “model”-“sampling method”.

requires longer solution time because it has more decision variables. Compared to applying

Benders decomposition to the original model which generally takes over 10 hours for each

instance, the ML-augmented models generate leader decisions of similar quality in 0.5–5%

of the solution time, highlighting the efficiency of our method.

7. Case Study: Cycling Infrastructure Planning in the City of Toronto

In this section, we present a case study applying our methodology to the City of Toronto,

Canada. Toronto has built over 65 km of new cycling infrastructure from 2019–2021, par-

tially in response to the increased cycling demand amid the COVID-19 pandemic. It plans

to expand the network by 100 km from 2022–2024. We started a collaboration with the

City’s Transportation Services Team in September 2020, focusing on developing quantita-

tive tools to support cycling infrastructure planning in Toronto. As an evaluation metric,

low-stress cycling accessibility has been used by the City of Toronto to support project

prioritization (City of Toronto 2021a,b). We introduce Toronto’s cycling network in Section

7.1 and use our methodology to examine actual and future potential decisions regarding

network expansion in Section 7.2.

Author: Machine Learning for Bilevel and Stochastic Programming
26

7.1. Cycling Network in Toronto

We construct Toronto’s cycling network based on the centerline network retrieved from the

Toronto Open Data Portal (City of Toronto 2020). We pre-process the network by removing

roads where cycling is legally prohibited, deleting redundant nodes and edges, and grouping

arterial roads into candidate cycling infrastructure projects (detailed in EC.8.1). The final

cycling network has 10,448 nodes, 35,686 edges, and 1,296 candidate projects totaling 1,913

km. We use the methods and data sources summarized in Lin et al. (2021) to calculate the

LTS of each link in the cycling network. LTS1 and LTS2 links are classified as low-stress,

while LTS3 and LTS4 links are high-stress since LTS2 corresponds to the cycling stress

tolerance for the majority of the adult population (Furth et al. 2016). Although most local

roads are low-stress, high-stress arterials create many disconnected low-stress “islands”,

limiting low-stress cycling accessibility in many parts of Toronto (Figure 4).

Figure 4 Level of traffic stress of Toronto’s road network (July 2021).

We use the following procedure to calculate the low-stress cycling accessibility of Toronto,

which serves as an evaluation metric of Toronto’s cycling network and the objective of

our cycling network design problem (19). The city is divided into 3,702 geographical units

called dissemination areas (DAs). We define each DA centroid as an origin with every other

DA centroid that is reachable within 30 minutes on the overall network being a potential

destination, totaling 1,154,663 OD pairs (S). These OD pairs are weighted by the job

counts at the destination (qod), retrieved from the 2016 Canadian census (Statistics Canada

2016). We use a rectangular impedance function with a cut-off time of 30 minutes (g).

Author: Machine Learning for Bilevel and Stochastic Programming
27

We assume a constant cycling speed of 15 km/h for travel time calculation. The resulting

accessibility measure can be interpreted as the total number of jobs (services) that one can

access within 30 minutes via low-stress routes in the City of Toronto. This metric has been

shown to be highly correlated with cycling mode choice in Toronto (Imani et al. 2019).

7.2. Expanding Toronto’s Cycling Network

As a part of our collaboration, in January 2021 we were asked to evaluate the accessibility

impact of three project alternatives for building bike lanes (see Figure 5) to meet the direc-

tion of Toronto’s City Council within the City’s adopted Cycling Network Plan, intended

to provide a cycling connection between midtown and the downtown core (City of Toronto

2021b). These projects were proposed in 2019 but their evaluation and implementation

were accelerated because of increased cycling demand during COVID. We determined that

alternative 2 had the largest accessibility impact. It was ultimately implemented due to

its accessibility impact and other performance indicators (City of Toronto 2021b).

Figure 5 Project alternatives and the existing cycling infrastructure in the City of Toronto (January 2021).

This decision-making process exemplifies the current practice of cycling infrastructure

planning in Toronto: i) manually compile a list of candidate projects, ii) rank the candidate

projects based on certain metrics, and iii) design project delivery plans (City of Toronto

2021c). From a computational perspective, steps i) and ii) serve as a heuristic for solving

MaxANDP. This heuristic approach was necessary for several reasons, including political

buy-in for the three alternatives, and the computational intractability of solving MaxANDP

Author: Machine Learning for Bilevel and Stochastic Programming
28

at the city scale. In fact, Benders decomposition, which was used to solve the synthetic

instances in Section 6, cannot find a feasible solution to these instances before running out

of memory. Now, we can use our ML-augmented model to search for project combinations

without pre-specifying candidates.

To this end, we first apply the ML-augmented model with a budget of 6 km (similar

to alternative 2). The optimal projects (see Figure 5) improve Toronto’s total low-stress

cycling accessibility by 9.46% over alternative 2. Instead of constructing only one corridor as

in alternative 2, the ML-augmented model selects six disconnected road segments. Some of

them serve as connections between existing cycling infrastructure, others bridge currently

disconnected low-stress sub-networks consisting of low-stress local roads. We also compare

our approach against i) three reduced models and ii) a greedy heuristic that iteratively

selects the candidate project that leads to the maximum increase in total accessibility until

the budget is depleted. As presented in Table 1, the greedy heuristic, which is commonly

adopted in practice and in the existing literature, closely matches the performance of the

human-proposed solution. With similar computational times, the three reduced models are

all inferior to our model, with the best reduced model being on par with the human per-

formance and others lagging over 20% behind. Interestingly, the greedy heuristic performs

quite well against the reduced model. We believe this highlights the difficulty of achieving

strong performance with a small sample in a purely sampling based model.

Table 1 Increases in the average low-stress cycling accessibility over 3,702 DAs in Toronto due to 6 km of new

cycling infrastructure selected by different approaches. We implement each sampling-based method with five

random samples and report the best result across the five samples.

Method (Sample) Accessibility Increase % change relative to human

Human 6,902 + 0.00%
Greedy 7,012 + 1.59%
Reduced (UNI) 4,965 − 28.06%
Reduced (PCEN) 5,730 − 20.45%
Reduced (BMED) 7,118 + 3.13%
ML-augmented (BMED) 7,555 +9.46%

Next, we increase the road design budget from 10 to 100 km in increments of 10 km. The

100 km budget aligns with Toronto’s cycling network expansion plan for 2022–2024 (City

of Toronto 2021a). We compare our model versus the greedy heuristic to demonstrate the

potential impact of our method on cycling infrastructure planning in Toronto. The greedy

Author: Machine Learning for Bilevel and Stochastic Programming
29

heuristic took over 3 days to expand the network by 100 km as each iteration involves

solving millions of shortest path problems. Our approach took around 4 hours to find a

leader decision using a sample of 2,000 OD pairs (1.7% of all OD pairs). Given this speedup,

we can solve our model multiple times with different samples and report the best solution

as measured by the total accessibility of all OD pairs. The computational setups of the

greedy heuristic and our approach are detailed in EC.8.3.

As shown in Figure 6, when holding both methods to the same computational time

(meaning that we solve our ML-augmented model with 21 different sets of OD pair samples

and taking the best solution), our approach increases accessibility by 19.2% on average

across different budgets. For example, with a budget of 70 km, we can improve the total

accessibility by a similar margin as achieved by the greedy heuristic using a 100 km budget,

corresponding to a savings of 18 million Canadian dollars estimated based on the City’s

proposed budget (City of Toronto 2021a). If instead we used the full 100 km budget, we

would achieve 11.3% greater accessibility. The improvements mainly come from identify-

ing projects that have little accessibility impact when constructed alone, yet significantly

improve the accessibility of their surrounding DAs when combined (visualized in EC.8.4).

These projects are typically not directly connected to existing cycling infrastructure, and

thus are difficult to identify through manual analysis. Finally, we note that solution quality

was similar between 14 and 21 samples, meaning that with we can achieve the above gains

while simultaneously reducing solution time by approximately 33%.

In summary, our approach is a valuable tool for transportation planners to search for

optimal project combinations that maximize the low-stress cycling accessibility. Although

this is not the only goal of cycling network design, we believe it can be useful in at least

three contexts: i) in the long term, our model can be used to generate a base plan that can

later be tuned by transportation planners; ii) in the near term, our approach can efficiently

search for project combinations from a large pool that would be very difficult to analyze

manually; iii) Given a fixed budget, our model provides a strong benchmark against which

to validate the goodness of human-proposed solutions.

8. Conclusion

In this paper, we present a novel ML-based approach to solving bilevel (stochastic) pro-

grams with a large number of independent followers (scenarios). We build on two existing

Author: Machine Learning for Bilevel and Stochastic Programming
30

Figure 6 The performance profiles of the greedy and optimal expansions. Note that using 21 different sets of

OD pairs samples results in the same solution time as the greedy expansion. Hence, 7 and 14 samples

correspond to 1/3 and 2/3 of the solution time of greedy.

strategies—sampling and approximation—to tackle the computational challenges imposed

by a large follower set. The model considers a sampled subset of followers while integrating

an ML model to estimate the impact of leader decisions on unsampled followers. Unlike

existing approaches for integrating optimization and ML models, we embed the ML model

training into the optimization model, which allows us to employ general follower features

that may not be compactly represented by leader decisions. Under certain assumptions, the

generated leader decisions enjoy solution quality guarantees as measured by the original

objective function considering the full follower set. We also introduce practical strate-

gies, including follower sampling algorithms and a representation learning framework, to

enhance the model performance. Using both synthetic and real-world instances of a cycling

network design problem, we demonstrate the strong computational performance of our

approach in generating high-quality leader decisions. The performance gap between our

approach and baseline approaches are particularly large when the sample size is small.

Acknowledgments

The authors are grateful to Sheng Liu, Merve Bodur, Elias Khalil, Rafid Mahmood, and Erick Delage for

helpful comments and discussions. This research is supported by funding from the City of Toronto and

NSERC Alliance Grant 561212-20. Resources used in preparing this research were provided, in part, by

the Province of Ontario, the Government of Canada through CIFAR, and companies sponsoring the Vector

Institute.

Author: Machine Learning for Bilevel and Stochastic Programming
31

References

Alizadeh S, Marcotte P, Savard G (2013) Two-stage stochastic bilevel programming over a transportation

network. Transportation Research Part B: Methodological 58:92–105.

Ban GY, Rudin C (2019) The big data newsvendor: Practical insights from machine learning. Operations

Research 67(1):90–108.

Bard JF (2013) Practical bilevel optimization: algorithms and applications, volume 30 (Springer Science &

Business Media).

Bertsimas D, Kallus N (2020) From predictive to prescriptive analytics. Management Science 66(3):1025–

1044.

Bertsimas D, Mundru N (2023) Optimization-based scenario reduction for data-driven two-stage stochastic

optimization. Operations Research 71(4):1343–1361.

Birge JR, Louveaux F (2011) Introduction to stochastic programming (Springer Science & Business Media).

Bodur M, Luedtke JR (2017) Mixed-integer rounding enhanced benders decomposition for multiclass service-

system staffing and scheduling with arrival rate uncertainty. Management Science 63(7):2073–2091.

Boutilier JJ, Chan TCY (2020) Ambulance emergency response optimization in developing countries. Oper-

ations Research 68(5):1315–1334.

Buehler R, Dill J (2016) Bikeway networks: A review of effects on cycling. Transport Reviews 36(1):9–27.

Candler W, Townsley R (1982) A linear two-level programming problem. Computers & Operations Research

9(1):59–76.

Carlsson JG, Jones B (2022) Continuous approximation formulas for location problems. Networks 80(4):407–

430.

Chen X, Sim M, Sun P, Zhang J (2008) A linear decision-based approximation approach to stochastic

programming. Operations Research 56(2):344–357.

City of Toronto (2020) City of Toronto open data. https://www.toronto.ca/city-government/

data-research-maps/open-data/, accessed: 2020-09-15.

City of Toronto (2021a) 2021 cycling network plan update. Accessed via https://www.toronto.ca/

legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf on July 8, 2022.

City of Toronto (2021b) ActiveTO: Lessons learned from 2020 and next steps for 2021. Accessed via https:

//www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-164864.pdf on July 21, 2022.

City of Toronto (2021c) Cycling network plan update: External stakeholders brief-

ing summary. Accessed via https://www.toronto.ca/wp-content/uploads/2021/06/

8ea2-External-Briefing-Meeting-Summary-June-7-2021.pdf on July 21, 2022.

Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local

fitting. Journal of the American Statistical Association 83(403):596–610.

https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-164864.pdf
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-164864.pdf
https://www.toronto.ca/wp-content/uploads/2021/06/8ea2-External-Briefing-Meeting-Summary-June-7-2021.pdf
https://www.toronto.ca/wp-content/uploads/2021/06/8ea2-External-Briefing-Meeting-Summary-June-7-2021.pdf

Author: Machine Learning for Bilevel and Stochastic Programming
32

Crainic TG, Hewitt M, Rei W (2014) Scenario grouping in a progressive hedging-based meta-heuristic for

stochastic network design. Computers & Operations Research 43:90–99.

Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for

language understanding. Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, 4171–4186.

Dill J, McNeil N (2016) Revisiting the four types of cyclists: Findings from a national survey. Transportation

Research Record 2587(1):90–99.

Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Mathemat-

ical Programming 95(3):493–511.

Duthie J, Unnikrishnan A (2014) Optimization framework for bicycle network design. Journal of Transporta-

tion Engineering 140(7):04014028.

Elmachtoub AN, Grigas P (2022) Smart “predict, then optimize”. Management Science 68(1):9–26.

Fischetti M, Ljubić I, Sinnl M (2017) Redesigning benders decomposition for large-scale facility location.

Management Science 63(7):2146–2162.

Furth PG, Mekuria MC, Nixon H (2016) Network connectivity for low-stress bicycling. Transportation

Research Record 2587(1):41–49.

Geurs KT, Van Wee B (2004) Accessibility evaluation of land-use and transport strategies: review and

research directions. Journal of Transport Geography 12(2):127–140.

Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theoretical Computer Sci-

ence 38:293–306.

Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. URL https://www.gurobi.com.

Harkey DL, Reinfurt DW, Knuiman M (1998) Development of the bicycle compatibility index. Transportation

Research Record 1636(1):13–20.

Hewitt M, Ortmann J, Rei W (2021) Decision-based scenario clustering for decision-making under uncer-

tainty. Annals of Operations Research 1–25.

Hochbaum DS, Shmoys DB (1985) A best possible heuristic for the k-center problem. Mathematics of Oper-

ations Research 10(2):180–184.

Hoeffding W (1994) Probability inequalities for sums of bounded random variables. The Collected Works of

Wassily Hoeffding, 409–426 (Springer).

Iacono M, Krizek KJ, El-Geneidy A (2010) Measuring non-motorized accessibility: issues, alternatives, and

execution. Journal of Transport Geography 18(1):133–140.

Imani AF, Miller EJ, Saxe S (2019) Cycle accessibility and level of traffic stress: A case study of Toronto.

Journal of Transport Geography 80:102496.

https://www.gurobi.com

Author: Machine Learning for Bilevel and Stochastic Programming
33

Keutchayan J, Ortmann J, Rei W (2023) Problem-driven scenario clustering in stochastic optimization.

Computational Management Science 20(1):13.

Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over

graphs. Advances in Neural Information Processing Systems, 6348–6358.

Khalil E, Le Bodic P, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer program-

ming. Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

Kou Z, Wang X, Chiu SFA, Cai H (2020) Quantifying greenhouse gas emissions reduction from bike share

systems: a model considering real-world trips and transportation mode choice patterns. Resources,

Conservation and Recycling 153:104534.

Kraus S, Koch N (2021) Provisional COVID-19 infrastructure induces large, rapid increases in cycling.

Proceedings of the National Academy of Sciences 118(15).

Landis BW, Vattikuti VR, Brannick MT (1997) Real-time human perceptions: toward a bicycle level of

service. Transportation Research Record 1578(1):119–126.

Leal M, Ponce D, Puerto J (2020) Portfolio problems with two levels decision-makers: Optimal portfo-

lio selection with pricing decisions on transaction costs. European Journal of Operational Research

284(2):712–727.

Lim J, Dalmeijer K, Guhathakurta S, Van Hentenryck P (2021) The bicycle network improvement problem:

Optimization algorithms and a case study in Atlanta. Journal of Transportation Engineering, Part A:

Systems 148(11).

Lin B, Chan TCY, Saxe S (2021) The impact of COVID-19 cycling infrastructure on low-stress cycling

accessibility: A case study in the City of Toronto. Findings 19069.

Liu H, Szeto W, Long J (2019) Bike network design problem with a path-size logit-based equilibrium con-

straint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics

and Transportation Review 127:284–307.

Liu S, He L, Shen ZJM (2021) On-time last-mile delivery: Order assignment with travel-time predictors.

Management Science 67(7):4095–4119.

Liu S, Shen ZJM, Ji X (2022a) Urban bike lane planning with bike trajectories: Models, algorithms, and a

real-world case study. Manufacturing & Service Operations Management 24(5):2500–2515.

Liu S, Siddiq A, Zhang J (2022b) Planning bike lanes with data: Ridership, congestion, and path selection,

available at SSRN: https://ssrn.com/abstract=4055703.

Lowry MB, Callister D, Gresham M, Moore B (2012) Assessment of communitywide bikeability with bicycle

level of service. Transportation Research Record 2314(1):41–48.

Magnanti TL, Mireault P, Wong RT (1986) Tailoring benders decomposition for uncapacitated network

design. Netflow at Pisa, 112–154 (Springer).

https://ssrn.com/abstract=4055703

Author: Machine Learning for Bilevel and Stochastic Programming
34

Mauttone A, Mercadante G, Rabaza M, Toledo F (2017) Bicycle network design: model and solution algo-

rithm. Transportation Research Procedia 27:969–976.

McGivney K, Yukich J (1999) Asymptotics for geometric location problems over random samples. Advances

in Applied Probability 31(3):632–642.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and

phrases and their compositionality. Advances in Neural Information Processing Systems, volume 26.

Mǐsić VV (2020) Optimization of tree ensembles. Operations Research 68(5):1605–1624.

Morabit M, Desaulniers G, Lodi A (2021) Machine-learning–based column selection for column generation.

Transportation Science 55(4):815–831.

Naoum-Sawaya J, Elhedhli S (2013) An interior-point benders based branch-and-cut algorithm for mixed

integer programs. Annals of Operations Research 210(1):33–55.

Olmos LE, Tadeo MS, Vlachogiannis D, Alhasoun F, Alegre XE, Ochoa C, Targa F, González MC (2020)

A data science framework for planning the growth of bicycle infrastructures. Transportation Research

Part C: Emerging Technologies 115:102640.

Papadakos N (2008) Practical enhancements to the Magnanti-Wong method. Operations Research Letters

36(4):444–449.

Parzen E (1962) On estimation of a probability density function and mode. The Annals of Mathematical

Statistics 33(3):1065–1076.

Patel RM, Dumouchelle J, Khalil E, Bodur M (2022) Neur2SP: Neural two-stage stochastic programming.

Advances in Neural Information Processing Systems, volume 35, 23992–24005.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss

R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830.

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. Proceedings of

the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710.

Radford A, Narasimhan K, Salimans T, Sutskever I, et al. (2018) Improving language understanding by

generative pre-training. Preprint: https: // openai. com/ research/ language-unsupervised .

Řeh̊uřek R, Sojka P (2010) Software Framework for Topic Modelling with Large Corpora. Proceedings of the

LREC 2010 Workshop on New Challenges for NLP Frameworks, 45–50.

Römisch W, Schultz R (1991) Stability analysis for stochastic programs. Annals of Operations Research

30(1):241–266.

Römisch W, Wets RB (2007) Stability of ε-approximate solutions to convex stochastic programs. SIAM

Journal on Optimization 18(3):961–979.

https://openai.com/research/language-unsupervised

Author: Machine Learning for Bilevel and Stochastic Programming
35

Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures on stochastic programming: modeling and theory

(SIAM).

Statistics Canada (2016) Population and dwelling count, 2016 census. https://www12.statcan.gc.ca/

census-recensement/2016/dp-pd/hlt-fst/pd-pl/Table.cfm?Lang=Eng&T=1902&PR=35&S=3&O=D&

RPP=50, accessed: 2020-11-15.

Tang Y, Agrawal S, Faenza Y (2020) Reinforcement learning for integer programming: Learning to cut.

International Conference on Machine Learning, 9367–9376 (PMLR).

Vale DS, Saraiva M, Pereira M (2016) Active accessibility: A review of operational measures of walking and

cycling accessibility. Journal of Transport and Land Use 9(1):209–235.

Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. Advances in Neural Information Processing

Systems, 2692–2700.

White DJ, Anandalingam G (1993) A penalty function approach for solving bi-level linear programs. Journal

of Global Optimization 3(4):397–419.

Zetina CA, Contreras I, Cordeau JF (2019) Exact algorithms based on benders decomposition for multicom-

modity uncapacitated fixed-charge network design. Computers & Operations Research 111:311–324.

Zhang W, Wang K, Jacquillat A, Wang S (2023) Optimized scenario reduction: Solving large-scale stochastic

programs with quality guarantees. INFORMS Journal on Computing .

Zugno M, Morales JM, Pinson P, Madsen H (2013) A bilevel model for electricity retailers’ participation in

a demand response market environment. Energy Economics 36:182–197.

https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/Table.cfm?Lang=Eng&T=1902&PR=35&S=3&O=D&RPP=50
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/Table.cfm?Lang=Eng&T=1902&PR=35&S=3&O=D&RPP=50
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/Table.cfm?Lang=Eng&T=1902&PR=35&S=3&O=D&RPP=50

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec1

Electronic Companion

EC.1. Proofs of Solution Quality Bounds

This section presents the proof of solution quality bounds, what were omitted in the main

body of this paper. This includes the proof of Theorems 1 and 2.

EC.1.1. Proof of Theorem 1

Proof. Let P be a non-parametric regression model as defined in equation (10), T ⊆ S
be a set of follower samples, and xNR

T be the leader decisions obtained by solving Prob-

lem (11). Unless otherwise noted, we write F̂T (x
NR
T , P) as F̂T (x

NR
T) and w(f s, f t) as wst

for brevity. We first decompose the optimality gap of xNR
T as evaluated on the bilevel

model (2):

F (xNR
T)−F (x∗)

=
[
F (xNR

T)− F̂T (x
NR
T)−F (x∗)+ F̂T (x

∗)
]
+
[
F̂T (x

NR
T)− F̂T (x

∗)
]

≤F (xNR
T)− F̂T (x

NR
T)−F (x∗)+ F̂T (x

∗)

=
∑

s∈S\T

qsE[Gs(xNR
T)]−

∑
s∈S\T

∑
t∈T

qswstE[Gt(xNR
T)]−

∑
s∈S\T

qsE[Gs(x∗)] +
∑

s∈S\T

∑
t∈T

qswstE[Gt(x∗)]

︸ ︷︷ ︸
(1)

+
∑

s∈S\T

qsGs(xNR
T)−

∑
s∈S\T

∑
t∈T

qswstGt(xNR
T)−

∑
s∈S\T

qsE[Gs(xNR
T)] +

∑
s∈S\T

∑
t∈T

qswstE[Gt(xNR
T)]

︸ ︷︷ ︸
(2)

−
∑

s∈S\T

qsGs(x∗)+
∑

s∈S\T

∑
t∈T

qswstGt(x∗)+
∑

s∈S\T

qsE[Gs(x∗)]−
∑

s∈S\T

∑
t∈T

qswstE[Gt(x∗)]

︸ ︷︷ ︸
(3)

The third line holds because xNR
T is the optimal solution to problem (11). We derive the

final equation by i) writing the extensive form of functions F and F̂T , and ii) adding and

subtracting the expected values of them. Next, we bound (1) and (2) + (3), separately,

which will eventually be combined to derive a bound on (1) + (2) + (3).

According to the Lipschitz property described by Assumption 3, we have

(1)≤
∑

s∈S\T

∑
t∈T

qswst
{∣∣E[Gs(xNR

T)]−E[Gt(xNR
T)]

∣∣+ ∣∣E[Gs(x∗)]−E[Gt(x∗)]
∣∣}

≤
∑

s∈S\T

∑
t∈T

2µQ̄wstdF(f
s, f t).

ec2 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Let wt =
∑

s∈S\T wst for all t∈ T . We have

(2)+ (3) = Q̄

 ∑
s∈S\T

[
Gs(xNR

T)−Gs(x∗)
]
−
∑
t∈T

wt
[
Gt(xNR

T)−Gt(x∗)
]

−
∑

s∈S\T

E[Gs(xNR
T)−Gs(x∗)] +

∑
t∈T

wtE[Gt(xNR
T)−Gt(x∗)]

 .

According to Assumptions 1 and 2, we can regard
[
Gs(xNR

T)−Gs(x∗)
]
as independent

random variables that are bounded in an interval of length 2Ḡ almost surely. Similarly,

independent random variables wt
[
Gt(xNR

T)−Gt(x∗)
]
are bounded in an interval of length

2wtḠ almost surely. By applying Hoeffding inequality (Hoeffding 1994), we have, with

probability at least 1− γ,

(2)+ (3)≤

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(wt)2

]
log(1/γ).

We therefore conclude that with probability at least 1− γ,

F (xNR
T)−F (x∗)≤

∑
s∈S\T

∑
t∈Tk(fs)

2µQ̄wstdF(f
s, f t)+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(wt)2

]
log(1/γ).

□

EC.1.2. Proof of Theorem 2

Proof. Let P be parametric regression model, T ⊆ S be a set of follower samples, and

(xNR
T , θT) be the optimal solution to Problem (12), (x∗, θ∗) be an feasible solution to

Problem (12). Unless otherwise noted, we write F̂T (x
PR
T , P) as F̂T . We first decompose the

optimality gap of xPR
T as evaluated on the bilevel model (2):

F (xPR
T)−F (x∗)

=
[
F (xPR

T)− F̂T (x
PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)
]
+
[
F̂T (x

PR
T ,θT)− F̂T (x

∗,θ∗)
]

≤F (xPR
T)− F̂T (x

PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)

≤
∑

s∈S\T

qsE[Gs(xPR
T)]−

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsE[Gs(x∗)] +
∑

s∈S\T

qsE[Gν(s)(x∗)]

︸ ︷︷ ︸
(1)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec3

+
∑

s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsP (f s;θT)−
∑

s∈S\T

qsP (f ν(s);θ∗)+
∑

s∈S\T

qsP (f s;θ∗)

︸ ︷︷ ︸
(2)

+
∑

s∈S\T

qsGν(s)(xPR
T)−

∑
s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsGν(s)(x∗)+
∑

s∈S\T

qsP (f ν(s);θ∗)

︸ ︷︷ ︸
(3)

+
∑

s∈S\T

qsGs(xPR
T)−

∑
s∈S\T

qsE[Gs(xPR
T)] +

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsGν(s)(xPR
T)

︸ ︷︷ ︸
(4)

−
∑

s∈S\T

qsGs(x∗)+
∑

s∈S\T

qsE[Gs(x∗)]−
∑

s∈S\T

qsE[Gν(s)(x∗)] +
∑

s∈S\T

qsGν(s)(x∗)

︸ ︷︷ ︸
(5)

According to Assumption 3, we have

(1)≤
∑

s∈S\T

qs
{∣∣E[Gs(xPR

T)]−E[Gν(s)(xPR
T)]

∣∣+ ∣∣E[Gs(x∗)]−E[Gν(s)(x∗)]
∣∣}≤ 2µQ̄

∑
s∈S\T

dF(f
s, f ν(s))

According to the Lipschitz Property of P , we have

(2)≤
∑

s∈S\T

qs
{∣∣P (f ν(s);θT)−P (f s;θT)

∣∣+ ∣∣P (f ν(s);θ∗)−P (f s;θ∗)
∣∣}≤ 2λQ̄

∑
s∈S\T

dF(f
s, f ν(s))

Since the training loss of P is bounded by L̄, we have

(3)≤ Q̄

{∑
t∈T

mt
1,S\T

∣∣P (f t;θT)−Gt(xPR
T)

∣∣+∑
t∈T

mt
1,S\T

∣∣P (f t;θ∗)−Gt(x∗)
∣∣}≤ 2Q̄L̄

We have

(4)+ (5) = Q̄

{∑
s∈S

[
Gs(xPR

T)−Gs(x∗)
]
−
∑
t∈T

mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]

−
∑
s∈S

E
[
Gs(xPR

T)−Gs(x∗)
]
+
∑
t∈T

mt
1,S\T E

[
Gt(xPR

T)−Gt(x∗)
]}

According to the Assumptions 1 and 2, we can regard
[
Gs(xPR

T)−G(x∗)
]
as independent

random variables that are bounded in an interval of length 2Ḡ almost surely. Similarly,

independent random variables −mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]
are bounded in an interval of

length 2mt
1,S\T Ḡ almost surely. By applying Hoeffding inequality (Hoeffding 1994), we

have, with probability at least 1− γ,

(4)+ (5)≤

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

ec4 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

We therefore conclude that with probability at least 1− γ,

F (xPR
T)−F (x∗)≤ 2Q̄L̄+2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, f ν(s))+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

□

EC.2. Proofs of Bound Tightness Results

This section presents the proof of our bound tightness results that were omitted in the

main body of this paper, including Proposition 1, Theorem 3, and Theorem 4.

EC.2.1. Proof of Proposition 1

Proof. Based on the definition of Tk, we have for any s∈ \T and k ∈ [1, p−1], Tk(f s)⊂
Tk+1(f

s). Therefore,

M(k,T) =
∑

s∈S\T

∑
t∈Tk(fs)

dF(f
s, f t).≤

∑
s∈S\T

∑
t∈Tk+1(fs)

dF(f
s, f t) =M(k+1,T).

□

EC.2.2. Proof of Theorem 3

We first prove two lemmas that are useful for proving Theorem 3. For convenience, we

re-state the definition of ENR
m when using the 1-NN weighting scheme.

ENR
m (T) = 2µQ̄M(1,T)+

√√√√2Q̄2Ḡ2

[
m− p+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ). (EC.1)

Lemma EC.1. For any T ⊂ S that is feasible to problem (13) and (f 1, f 2, . . . , fm) for some

m∈N+, we have 0≤ENR
m (T)≤ ĒNR

m (T) where

ĒNR
m (T) = 2µQ̄M(1,T)+

√
2Q̄2Ḡ2 [m− p+ pd2] log(1/γ)

Proof. The first inequality is trivial. The second inequality holds because |S\T |=m−p

and mt
1,\T = |S(t)| ≤ d for all t∈ T which come from the constraints in problem (13). □

Lemma EC.2. If (f 1, f 2, . . . , fm) is a sequence of i.i.d. random points in [0,1]ξ with a con-

tinuous density σ(f), p=max{1, αm(ξ−1)/ξ} for some α ∈ (0,1], and ⌈m/p⌉ ≤ d≤ β⌈m/p⌉
for some β ≥ 1, then we have

lim
m→∞

1

m
ĒNR

m (Tp,d) = 0.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec5

Proof. We first derive the limit of the second term in ĒNR
m . We have

0≤ 1

m

√
2Q̄2Ḡ2 [m− p+ pd2] log(1/γ)≤

√
2Q̄2Ḡ2

[
1

m
− α

m(ξ+1)/ξ
+

β2

αm(ξ−1)/ξ

]
log(1/γ).

By the Squeeze theorem, we have

lim
m→∞

1

m

√
2Q̄2Ḡ2 [m− p+ pd2] log(1/γ) = 0. (EC.2)

We next derive the limit of the first term in ĒNR
m . According to Theorem 1.1 fromMcGivney

and Yukich (1999), we have

lim
m→∞

1

m(ξ−1)/ξ
M(1,T) =Cd,ξ

∫
[0,1]ξ

σ(ξ−1)/ξ(f)df. (EC.3)

where Cd,ξ > 0 is a constant that depends on d and ξ. As estimated in Theorem 12 from

Carlsson and Jones (2022), Cd,ξ satisfies

Cd,ξ ≤
2

3

√
d. (EC.4)

Given equations (EC.3) and (EC.4) and that d≤ β⌈m/p⌉ and p=max{1, αm(ξ−1)/ξ},

lim
m→∞

1

m
M(1,T) = 0. (EC.5)

Combining equations (EC.2) and (EC.5), we have

lim
m→∞

1

m
ĒNR

m (Tp,d) = 0.

□

Proof of Theorem 3. By Lemmas EC.1 and EC.2 and the Squeeze Theorem, we have

lim
m→∞

1

m
ENR

m (Tp,d) = 0.

□

EC.2.3. Proof of Theorem 4

We first prove two lemmas that are useful for proving Theorem 4. For convenience, we

restate the definition of EPR
m :

EPR
m (T , L̄) = 2Q̄L̄ + 2Q̄(λ + µ)M(1,T) +

√√√√2Q̄2Ḡ2

[
m− p+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

ec6 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Lemma EC.3. For any T ⊂ S that is feasible to problem (13), (f 1, f 2, . . . , fm) for some

m∈N+, and L̄ > 0, we have 0≤EPR
m (T , L̄)≤ ĒPR

m (T , L̄) where

ĒPR
m (T , L̄) = 2Q̄L̄+2Q̄(λ+µ)M(1,T)+

√
2Q̄2Ḡ2 [m− p+ pd2] log(1/γ).

Proof. Similar to Lemma EC.1, the second inequality holds because of the constraints

|S(t)| ≤ d in Problem (13). □

Lemma EC.4. If (f 1, f 2, . . . , fm) is a sequence of i.i.d. random points in [0,1]ξ with density

σ(f), p=max{1, αm(ξ−1)/ξ} for some α ∈ (0,1], ⌈m/p⌉ ≤ d≤ β⌈m/p⌉ for some β ≥ 1, and

L̄ is a finite positive constant, then

lim
m→∞

1

m
ĒPR

m (Tp,d) = 0.

Proof. Since L̄ is a finite positive constant, according to equations (EC.2) and (EC.5),

lim
m→∞

1

m
ĒPR

m (Tp,d, L̄) = 0.

□

Proof of Theorem 4. According to Lemmas EC.3 and EC.4 and the Squeeze Theo-

rem,

lim
m→∞

1

m
EPR

m (Tp,d, L̄) = 0

□

EC.3. Proofs of Representation Learning Results

EC.3.1. Proof of Lemma 1

Proof. Let λ∗ denote an optimal solution to Problem (15) and pst∗ = pst(λ∗). According

to equation (16), we have ∑
t∈[n]

pst∗ = 1, ∀s∈ [n].

Therefore, for any s∈ [n], ps∗ := [ps1∗, ps2∗, . . . , psn∗] is an optimal solution to the following

optimization problem:

maximize
p∈Rn

+

∏
t∈[n]

[
pst

]nst

(EC.6a)

subject to
∑
t∈[n]

pst = 1. (EC.6b)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec7

where nst denote the number of times that node t appear after node s in random walks

{W}i∈[n],j∈[nwalk]. Writing the Lagrangian relaxation for Problem (EC.6), we obtain

L(p, µ) =
∏
t∈[n]

[
pst

]nst

+µ(
∑
t∈[n]

pst− 1) (EC.7)

where µ∈R is the Lagrangian multiplier of constraint (EC.6b). By applying the Lagrangian

condition, we know that ps∗ satisfy

pst∗ =
nst∑

k∈[n] n
sk
. (EC.8)

Given the random-walk generation process described in Algorithm 1, according to the law

of large number, we have

lim
nwalk→+∞

pst∗ = lim
nwalk→+∞

nst∑
k∈[n] n

sk
=

πst∑
k∈[n] π

sk
. (EC.9)

□

EC.3.2. Proof of Proposition 2

Proof. According to Lemma 1, for any (s, t)∈ [n]× [n], we have

exp[(f s)⊺f t]∑
k∈[n] exp[(f

s)⊺fk]
=

πst∑
k∈[n] π

sk
. (EC.10)

Therefore,

exp[(f s)⊺f t] = απst, (EC.11)

where α = exp [(f s)⊺f s] because πss = 0 for any s ∈ [n]. Note that this also implies that

∥f s∥= ∥f t∥ for any (s, t)∈ [n]× [n].

Let dF(·, ·) be a function that calculates the cosine distance between two vectors in the

feature space F . For any (s, t)∈ [n]× [n],

dF(f
s, f t) =

1

2
− (f s)⊺f t

2∥f s∥∥f t∥
=

1

2
− logα+ logπst

2 logα
≤ 1

2nsim logα

nsim∑
i=1

∣∣Gi
s−Gi

t

∣∣ . (EC.12)

The last inequality holds because Φ is a sub-exponential function. Therefore, we have for

any (s, t)∈ [n]× [n],

2 logαdF(f
s, f t)≥ 1

nsim

nsim∑
i=1

∣∣Gi
s−Gi

t

∣∣ .

ec8 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

EC.4. ML-Augmented Model with Alternative Loss Functions

In this section, we present ML-augmented models with alternative loss functions and their

associated sub-optimality bounds. Proofs are also included.

EC.4.1. L2 loss

When using the L2 loss, the ML-augmented model becomes

min
x∈X ,θ∈Θ

f(x)+
∑
t∈T

Gt(y)+
∑

s∈S\T

P (f s;θ)

∣∣∣∣∣∣
∑
t∈T

∣∣Gt(y)−P (f t;θ)
∣∣2 ≤ L̄

 . (EC.13)

Theorem EC.1. Given a follower sample T ⊆ S, let P be a parametric ML model, xPR
T ,l2

be the optimal solution to Problem (EC.13), ν(s) be the nearest neighbor of f s in {f t}t∈T ,
and mt

1,S\T =
∑

s∈S\T 1[ν(s) = t]. If Assumptions 1–4 hold, with probability at least 1− γ,

F (xPR
T ,l2

)−F (x∗)≤EPR
m,l2

(T , L̄) where

EPR
m,l2

(T , L̄) = 2Q̄(λ+µ)
∑

s∈S\T

dF(f
s, f ν(s))+ 2Q̄

√
L̄
∑
t∈T

(mt
1,S\T)

2

+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ). (EC.14)

Proof The proof of Theorem EC.1 largely follows the proof of Theorem 2. For clarity,

we present the full proof below and highlight the difference between them in the end.

Let P be parametric regression model, T ⊆ S be a set of follower samples, and (xNR
T ,

θT) be the optimal solution to Problem (EC.13), (x∗, θ∗) be an feasible solution to Prob-

lem (EC.13). Unless otherwise noted, we write F̂T (x
PR
T , P) as F̂T . We first decompose the

optimality gap of xPR
T as evaluated on the bilevel model (2):

F (xPR
T)−F (x∗)

=
[
F (xPR

T)− F̂T (x
PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)
]
+
[
F̂T (x

PR
T ,θT)− F̂T (x

∗,θ∗)
]

≤F (xPR
T)− F̂T (x

PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)

≤
∑

s∈S\T

qsE[Gs(xPR
T)]−

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsE[Gs(x∗)] +
∑

s∈S\T

qsE[Gν(s)(x∗)]

︸ ︷︷ ︸
(1)

+
∑

s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsP (f s;θT)−
∑

s∈S\T

qsP (f ν(s);θ∗)+
∑

s∈S\T

qsP (f s;θ∗)

︸ ︷︷ ︸
(2)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec9

+
∑

s∈S\T

qsGν(s)(xPR
T)−

∑
s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsGν(s)(x∗)+
∑

s∈S\T

qsP (f ν(s);θ∗)

︸ ︷︷ ︸
(3)

+
∑

s∈S\T

qsGs(xPR
T)−

∑
s∈S\T

qsE[Gs(xPR
T)] +

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsGν(s)(xPR
T)

︸ ︷︷ ︸
(4)

−
∑

s∈S\T

qsGs(x∗)+
∑

s∈S\T

qsE[Gs(x∗)]−
∑

s∈S\T

qsE[Gν(s)(x∗)] +
∑

s∈S\T

qsGν(s)(x∗)

︸ ︷︷ ︸
(5)

According to Assumption 3, we have

(1)≤
∑

s∈S\T

qs
{∣∣E[Gs(xPR

T)]−E[Gν(s)(xPR
T)]

∣∣+ ∣∣E[Gs(x∗)]−E[Gν(s)(x∗)]
∣∣}≤ 2µQ̄

∑
s∈S\T

dF(f
s, f ν(s))

According to the Lipschitz Property of P , we have

(2)≤
∑

s∈S\T

qs
{∣∣P (f ν(s);θT)−P (f s;θT)

∣∣+ ∣∣P (f ν(s);θ∗)−P (f s;θ∗)
∣∣}≤ 2λQ̄

∑
s∈S\T

dF(f
s, f ν(s))

For (3), we have

(3)≤Q̄

{∑
t∈T

mt
1,S\T

∣∣P (f t;θT)−Gt(xPR
T)

∣∣+∑
t∈T

mt
1,S\T

∣∣P (f t;θ∗)−Gt(x∗)
∣∣}

≤Q̄
√∑

t∈T

(mt
1,S\T)

2

√∑

t∈T

(P (f t;θT)−Gt(xPR
T))2+

√∑
t∈T

(P (f t;θ∗)−Gt(x∗))2

≤2Q̄

√√√√L̄

[∑
t∈T

(mt
1,S\T)

2

]

The second line follows the Cauchy-Schwarz inequality. The third line holds because the

l2 training loss is bounded in Problem (EC.13).

For (4) and (5), we have

(4)+ (5) = Q̄

{∑
s∈S

[
Gs(xPR

T)−Gs(x∗)
]
−
∑
t∈T

mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]

−
∑
s∈S

E
[
Gs(xPR

T)−Gs(x∗)
]
+
∑
t∈T

mt
1,S\T E

[
Gt(xPR

T)−Gt(x∗)
]}

According to the Assumptions 1 and 2, we can regard
[
Gs(xPR

T)−G(x∗)
]
as independent

random variables that are bounded in an interval of length 2Ḡ almost surely. Similarly,

ec10 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

independent random variables −mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]
are bounded in an interval of

length 2mt
1,S\T Ḡ almost surely. By applying Hoeffding inequality (Hoeffding 1994), we

have, with probability at least 1− γ,

(4)+ (5)≤

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

We therefore conclude that with probability at least 1− γ,

F (xPR
T)−F (x∗)≤ 2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, f ν(s))+ 2Q̄

√
L̄
∑
t∈T

(mt
1,S\T)

2

+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

□

Remark EC.1. Compared to the proof of Theorem 2, the only difference lies in how we

bound (3) as defined above. When using l2, we rely on the Cauchy-Schwarz inequality to

first bound (3) by the sum of l2 training losses associated with xPRT and x∗ and then

bound the training loss based on the training loss constraint specified in Problem (EC.13).

Remark EC.2. The bound derived in Theorem EC.1 is controlled by i) the training loss

L̄, and ii) the sample T . The first term is proportional to the p-median objective introduced

in Problem (13). The second and the third terms are both minimized when the unsampled

followers are evenly assigned to the sampled followers based on the nearest-neighbor rule.

Therefore, we can still use Problem (13) to select follower samples to minimize this bound,

and the tightness result introduced in Theorem 4 still holds.

EC.4.2. L∞ loss

When using the L∞ loss, the ML-augmented model becomes

min
x∈X ,θ∈Θ

f(x)+
∑
t∈T

Gt(y)+
∑

s∈S\T

P (f s;θ)

∣∣∣∣∣∣max
t∈T

{
|Gt(y)−P (f t;θ)|

}
≤ L̄

 . (EC.15)

Theorem EC.2. Given a follower sample T ⊆ S, let P be a parametric ML model, xPR
T ,l∞

be the optimal solution to Problem (EC.15), ν(s) be the nearest neighbor of f s in {f t}t∈T ,

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec11

and mt
1,S\T =

∑
s∈S\T 1[ν(s) = t]. If Assumptions 1–4 hold, with probability at least 1− γ,

F (xPR
T ,l∞

)−F (x∗)≤EPR
m,l∞

(T , L̄) where

EPR
m,l∞(T , L̄) = 2Q̄L̄|S\T |+2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, f ν(s))

+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ). (EC.16)

Proof The proof of Theorem EC.2 largely follows the proof of Theorem 2. For clarity,

we present the full proof below and highlight the difference between them in the end.

Let P be parametric regression model, T ⊆ S be a set of follower samples, and (xNR
T ,

θT) be the optimal solution to Problem (EC.15), (x∗, θ∗) be an feasible solution to Prob-

lem (EC.15). Unless otherwise noted, we write F̂T (x
PR
T , P) as F̂T . We first decompose the

optimality gap of xPR
T as evaluated on the bilevel model (2):

F (xPR
T)−F (x∗)

=
[
F (xPR

T)− F̂T (x
PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)
]
+
[
F̂T (x

PR
T ,θT)− F̂T (x

∗,θ∗)
]

≤F (xPR
T)− F̂T (x

PR
T ,θT)−F (x∗)+ F̂T (x

∗,θ∗)

≤
∑

s∈S\T

qsE[Gs(xPR
T)]−

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsE[Gs(x∗)] +
∑

s∈S\T

qsE[Gν(s)(x∗)]

︸ ︷︷ ︸
(1)

+
∑

s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsP (f s;θT)−
∑

s∈S\T

qsP (f ν(s);θ∗)+
∑

s∈S\T

qsP (f s;θ∗)

︸ ︷︷ ︸
(2)

+
∑

s∈S\T

qsGν(s)(xPR
T)−

∑
s∈S\T

qsP (f ν(s);θT)−
∑

s∈S\T

qsGν(s)(x∗)+
∑

s∈S\T

qsP (f ν(s);θ∗)

︸ ︷︷ ︸
(3)

+
∑

s∈S\T

qsGs(xPR
T)−

∑
s∈S\T

qsE[Gs(xPR
T)] +

∑
s∈S\T

qsE[Gν(s)(xPR
T)]−

∑
s∈S\T

qsGν(s)(xPR
T)

︸ ︷︷ ︸
(4)

−
∑

s∈S\T

qsGs(x∗)+
∑

s∈S\T

qsE[Gs(x∗)]−
∑

s∈S\T

qsE[Gν(s)(x∗)] +
∑

s∈S\T

qsGν(s)(x∗)

︸ ︷︷ ︸
(5)

According to Assumption 3, we have

(1)≤
∑

s∈S\T

qs
{∣∣E[Gs(xPR

T)]−E[Gν(s)(xPR
T)]

∣∣+ ∣∣E[Gs(x∗)]−E[Gν(s)(x∗)]
∣∣}≤ 2µQ̄

∑
s∈S\T

dF(f
s, f ν(s))

ec12 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

According to the Lipschitz Property of P , we have

(2)≤
∑

s∈S\T

qs
{∣∣P (f ν(s);θT)−P (f s;θT)

∣∣+ ∣∣P (f ν(s);θ∗)−P (f s;θ∗)
∣∣}≤ 2λQ̄

∑
s∈S\T

dF(f
s, f ν(s))

For (3), we have

(3)≤Q̄

{∑
t∈T

mt
1,S\T

∣∣P (f t;θT)−Gt(xPR
T)

∣∣+∑
t∈T

mt
1,S\T

∣∣P (f t;θ∗)−Gt(x∗)
∣∣}≤ 2Q̄L̄|S\T |

The second inequality holds because i) the l∞ training loss is bounded in Problem (EC.15),

and ii)
∑

t∈T mt
1,S\T = |S\T |.

For (4) and (5), we have

(4)+ (5) = Q̄

{∑
s∈S

[
Gs(xPR

T)−Gs(x∗)
]
−
∑
t∈T

mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]

−
∑
s∈S

E
[
Gs(xPR

T)−Gs(x∗)
]
+
∑
t∈T

mt
1,S\T E

[
Gt(xPR

T)−Gt(x∗)
]}

According to the Assumptions 1 and 2, we can regard
[
Gs(xPR

T)−G(x∗)
]
as independent

random variables that are bounded in an interval of length 2Ḡ almost surely. Similarly,

independent random variables −mt
1,S\T

[
Gt(xPR

T)−Gt(x∗)
]
are bounded in an interval of

length 2mt
1,S\T Ḡ almost surely. By applying Hoeffding inequality (Hoeffding 1994), we

have, with probability at least 1− γ,

(4)+ (5)≤

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

We therefore conclude that with probability at least 1− γ,

F (xPR
T)−F (x∗)≤ 2Q̄L̄|S\T |+2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, f ν(s))

+

√√√√2Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

□

Remark EC.3. Compared to the proof of Theorem 2, the only difference lies in how we

bound (3) as defined above. When using l∞, we can bound (3) by leveraging the training

loss constraint specified in Problem (EC.15).

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec13

Remark EC.4. The bound derived in Theorem EC.2 has the same structure as the bound

derived in Theorem 2. Therefore, we can, again, leverage Problem (13) to select follower

samples to minimize this bound, and the tightness result introduced in Theorem 4 still

holds.

EC.5. Formulation of MaxANDP using Location-Based Accessibility Measures

In this section, we present the full formulation of MaxANDP, as presented in (19), using

a piecewise linear impedance function g and shortest-path routing problems as introduced

in Section 6.1.

Since g is a decreasing function of travel time and the objectives of the followers are

to minimize travel time, the objectives of the leader and followers are aligned. Therefore,

the optimality conditions (19b) can be replaced with the routing constraints (21b)–(21d),

resulting in a single-level formulation:

maximize
x,y,z

∑
(o,d)∈S

qodg(yod) (EC.17a)

subject to c⊺x≤Bedge (EC.17b)

b⊺z≤Bnode (EC.17c)

Ayod = eod, ∀(o, d)∈ S (EC.17d)

yodij ≤ xij, ∀(i, j)∈ Eh, (o, d)∈ S (EC.17e)

yodij ≤ xwl + zi, ∀i∈Nh, (i, j)∈ E−h (i), (w, l)∈ Eh(i), (o, d)∈ S (EC.17f)

0≤ yodij ≤ 1, ∀(i, j)∈ E (o, d)∈ S (EC.17g)

x∈ {0,1}|Eh| (EC.17h)

z∈ {0,1}|Nh|. (EC.17i)

It is known that the parameter matrix of the flow balance constraints (EC.17d) is totally

unimodular. Moreover, for any fixed feasible x and z, each row in the parameter matrix

of constraints (EC.17e)–(EC.17g) has one “1” with all other entries being zero. Therefore,

for any fixed x and z, the parameter matrix of constraints (EC.17d)–(EC.17g) is totally

unimodular. We thus can discard the integrality constraints on yod and treat them as

continuous decision variables bounded in [0,1]. The only thing left is to linearize function

g, which depends on the values of β1 and β2.

ec14 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Concave impedance function. When β1 ≤ β2, g can be treated as a concave function

of travel time t⊺yod on [0, T2]. We introduce continuous decision variables vod ∈R+, for any

OD pairs (o, d)∈ S, representing the accessibility of OD pairs (o, d). Problem (EC.17) can

then be written as

maximize
v,x,y,z

∑
(o,d)∈S

qodvod (EC.18a)

subject to (EC.17b)–(EC.17f)

vod ≤ α1−β1t
⊺yod, ∀(o, d)∈ S (EC.18b)

vod ≤ α2−β2t
⊺yod, ∀(o, d)∈ S (EC.18c)

vod ≥ 0, ∀(o, d)∈ S (EC.18d)

(EC.17g)–(EC.17i)

where α1 = 1 and α2 = 1+ (β2 − β1)T1 are the intercepts of the linear functions in [0, T1)

and [T1, T2) respectively.

Convex impedance function. When β1 > β2, g can be treated as a strictly convex

function of travel time t⊺yod on [0, T2]. We introduce binary decision variables rod, for any

OD pairs (o, d) ∈ S, representing if the travel time of pair (o, d) is in [0, T1] (= 1) or not

(= 0). We introduce continuous decision variabel uod
t ∈R+, for any OD pairs (o, d)∈ S and

any of the two travel time intervals t∈ {1,2}. Problem (EC.17) can then be written as

maximize
r,u,x,y,z

∑
(o,d)∈S

2∑
t=1

qod(αt−βtu
od
t) (EC.19a)

subject to (EC.17b)–(EC.17f)

uod
1 ≤ T1r

od, ∀(o, d)∈ S (EC.19b)

T1(1− rod)≤ uod
2 ≤ T (1− rod), ∀(o, d)∈ S (EC.19c)

uod
1 +uod

2 = t⊺yod, ∀(o, d)∈ S (EC.19d)

uod
t ≥ 0, ∀(o, d)∈ S, t∈ {1,2} (EC.19e)

rod ∈ {0,1}, ∀(o, d)∈ S (EC.19f)

(EC.17g)–(EC.17i). (EC.19g)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec15

EC.6. Solution Method for MaxANDP using Location-Based Accessibility
Measures

In this section, we present a Benders decomposition algorithm that takes advantage of the

block structure of problem (EC.17) (i.e. the routing problems of the OD pairs are inde-

pendent of each other) along with its acceleration strategies. This algorithm is applicable

to both convex and concave impedance functions, and can be easily extended to solving

the ML-augmented model of MaxANDP. For ease of presentation, we treat g as a function

for travel time t⊺yod in this section.

EC.6.1. Benders Decomposition

We start by introducing the Benders reformulation of problem (EC.17). We introduce

continuous decision variables τ od, for any OD pair (o, d) ∈ S, indicating the travel time

from o to d using the low-stress network. We then re-written problem (EC.17) as

maximize
x,y,z,τ

∑
(o,d)∈S

qdg(τ od) (EC.20a)

subject to (EC.17b), (EC.17c), (EC.17h), (EC.17i)

τ od ≥min
yod

{
t⊺yod

∣∣ (EC.17d)− (EC.17g)
}
, ∀(o, d)∈ S. (EC.20b)

For each (o, d)∈ S, We associate unbounded dual variables λod with constraints (EC.17d)

and non-negative dual variables θod, δod, and πod with constraints (EC.17e)–(EC.17g),

respectively. Given any network design (x,z), we formulate the dual of the routing problem

as

maximize
θ,δ,π≥0, λ

−λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

(EC.21a)

subject to −λod
j +λod

i −1 [(i, j)∈ Eh]θodij −1(i∈Nh)
∑

(w,l)∈Eh(i)

δodijwl−πod
ij ≤ tij, ∀(i, j)∈ E .

(EC.21b)

Since the routing problem associated with each OD pair is always feasible and bounded,

its dual (EC.21) is also feasible and bounded. Let Πod denote the set of extreme points of

problem (EC.21). According to the duality theory, constraints (EC.20b) can be replace by

ec16 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

τ od ≥−λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

∀λod,θod,δod,πod ∈Πod, (o, d)∈ S. (EC.22)

This set of constraints is of exponential size, but can be solved with a cutting-plane

method that iterates between problems (EC.20) and (EC.21). More specifically, we initial-

ize problem (EC.20) without any of the constraints (EC.22). We solve problem (EC.20) to

obtain feasible x and z and trial values of τ od. For each (o, d) ∈ S, we then solve a prob-

lem (EC.21) with the x and s and check if the trail value of τ od and the optimal solution

of problem (EC.21) satisfy constraint (EC.22) or not. If not, the violated cut is added to

problem (EC.20). This process repeats until no new cut is added to problem (EC.20).

Although this Benders decomposition algorithm largely reduces the problem size and

improves computational efficiency, it is insufficient to deal with our synthetic instances due

to the widely acknowledged primal degeneracy issue for network flow problems (Magnanti

et al. 1986, Naoum-Sawaya and Elhedhli 2013) . We thus adopt a cut enhancement method

and some acceleration strategies, which we describe in the next two sections, respectively.

EC.6.2. Pareto-Optimal Benders Cut

We adapt the cut enhancement method proposed by Magnanti et al. (1986) to generate

pareto-optimal Benders cut by solving an auxiliary problem after a cut is identified by solv-

ing problem (EC.21). Let (x̄, z̄) denote a relative inner point of the feasible region specified

by constraints (EC.17b)–(EC.17c), ηod(x,z) denote the optimal value of problem (EC.21)

given x and z. The Auxiliary problem associated with (o, d)∈ S is

maximize
λ,θ,δ,π≥0

−λod
d +λod

o −
∑

(i,j)∈Eh

x̄ijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(x̄wl + z̄i)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

(EC.23a)

subject to −λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij = ηod(x,z)

(EC.23b)

−λod
j +λod

i −1 [(i, j)∈ Eh]θodij −1(i∈Nh)
∑

(w,l)∈Eh(i)

δodijwl−πod
ij ≤ tij, ∀(i, j)∈ E .

(EC.23c)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec17

Problem (EC.23) is different from problem (EC.21) in that it has an additional constraint

(EC.23b) ensuring that the solution generated by problem (EC.23) is optimal to problem

(EC.21). We follow Lim et al. (2021) to initialize the relative inner points as

x̄ij =min{1, Bedge

2|Eh|cij
}, ∀(i, j)∈ Eh,

z̄i =min{1, Bnode

2|Nh|bi
}, ∀i∈Nh.

Through the solution process, every time an integral network design decision (x′,z′) is

found, we follow Fischetti et al. (2017) and Papadakos (2008) to update the relative inner

point as

x̄ij←
1

2
(x̄ij +x′

ij), ∀(i, j)∈ Eh,

z̄i←
1

2
(z̄ij + z′ij), ∀i∈Nh.

This cut enhancement strategy requires longer time to generate a single cut as an auxiliary

problem has to be solved. However, according to our computational experiments, it signifi-

cantly reduces the number of cuts needed for solving the problem, and thus achieves shorter

overall computation time compared to naive implementation of the Benders decomposition

algorithm.

EC.6.3. Other Acceleration Strategies

We adopt the following strategies to further accelerate the benders decomposition algo-

rithm.

• Initial Cut Generation. Before solving problem (EC.20), we apply the Benders decom-

position algorithm to solve its linear-programming (LP) relaxation. Following Fischetti

et al. (2017), Bodur and Luedtke (2017) and Zetina et al. (2019), we then add the cuts

that are binding at the optimal solution of the LP relaxation to problem (EC.20). These

cuts help to obtain the LP-relaxation bound at the root node of the branch-and-bound

tree.

• Flow Variable Reduction. In Problem (EC.17), routing variables are created for all

(o, d) ∈ S and all (i, j) ∈ E . However, given that a dummy low-stress link whose travel

time is T2 is added to connect each OD pair, edges that are far away from the origin and

destination will not be used. Therefore, for each OD pair (o, d) ∈ S, we generate routing

ec18 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

variables xod
ij only if the sum of travel time from o to node i, travel time along edge (i, j), and

the travel time from node j to d is less than T . This pre-processing strategy significantly

reduces the problem size.

• Design Variable Reduction. In Problem (EC.20), road design decisions for different

edges are made separately. However, a more practical way of cycling infrastructure planning

is to build continuous cycling infrastructure on road segments, each consisting of multiple

edges. Such road segments can be identified through communication with transportation

planners. We incorporate this consideration by replacing the road design variables yij with

yp where p indicates the road segment that edge (i, j) belongs to. In our computational

and case studies, we group all edges between two adjacent intersections of arterial roads

into one project, resulting in 84 and 1,296 projects in the synthetic and real networks,

respectively. This preprocessing strategy reduces the number of binary decision variables.

EC.6.4. Hyper-parameter tuning for the ML-augmented Model

EC.6.5. Alternative Approach to Select k

Algorithm 2 A solution method using the kNN-augmented model

Input: Width of the search window ω; Number of leader decisions to sample nd; Follower

sample size p; Follower features {f s}s∈S .

Output: A leader solution x̂kNN.

1: Randomly sample nd feasible leader solutions {xi ∈X}nd
i=1.

2: for i= 1 to nd do

3: Generate a dataset Di = {f s,Gs(xi)}s∈S .

4: Perform a random train-test split to obtain Dtrain
i and Dtest

i such that |Dtrain
i |= p.

5: for k= 1 to p do

6: Build kNN model Pi,k using Dtrain
i .

7: Calculate out-of-sample loss ei,k =
1

|Dtest
i |

∑
(fs,Gs(xi))∈Dtest

i
|Pi,k(f

s)−Gs(xi)|.

8: Select the best k∗ ∈ argmink∈[p]

{
1
nd

∑nd

i=1 ei,k

}
.

9: for k ∈K := {max{1, k∗−ω}, . . . ,min{p, k∗+ω}} do

10: Obtain leader’s solution x̂k by solving problems (13) and (11) with k.

11: Select the best solution x̂kNN ∈ argminx {F (x) |x∈ {x̂k}k∈K}.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec19

EC.7. Computational Study Details

EC.7.1. The Synthetic Grid Network

As presented in Figure EC.1, we create a synthetic network comprising a set of arterial

roads, which are assumed to be high-stress, and local roads, which are assumed to be low-

stress. The arterial roads constitute a 6x6 grid. Intersections of arterial roads are assumed

to be signalized. On each arterial road segment, we place three nodes, each representing

the intersection of the arterial road and a local road. Each of these intersections is assigned

a traffic signal with a probability of 0.3. We generate 72 population centroids randomly

distributed within the 36 major grid cells. Each centroid represents one origin and is a

destination for all other centroids. We create low-stress edges that connect each centroid

to 70% of the intersections around the major grid cell in which that centroid is located.

All edges are bidirectional. Each direction is assigned a travel time randomly distributed

between 1 and 5. We use a constant travel speed of 1 to convert the generated travel time

to distance. We consider all the OD pairs between which the shortest travel time on the

overall network is less than 60, each assigned a weight uniformly distributed between 1 and

10. The network consists of 1,824 edges, 373 nodes, and 3,526 OD pairs. Arterial edges are

grouped into 84 candidate projects. Setting the road design budget to 100, 300, and 500

roughly corresponds to selecting 5, 10, and 15 projects, respectively.

EC.7.2. Accessibility Calculations

EC.7.2.1. Location-based accessibility measures. We vary the parameters of the

piecewise linear function g, mimicing three commonly used impedance function for location-

based accessibility (Figure EC.2):

1. Negative exponential function: β1 = 0.0375, β2 = 0.00625, T1 = 20, T2 = 60.

2. Linear function: β1 = 1/60, β2 = 0, T1 = 60, T2 = 60.

3. Rectangular function: β1 = 0.001, β2 = 0.471, T1 = 58, T2 = 60.

EC.7.2.2. Utility-based accessibility measure. We adopt the utility-based mea-

sure proposed by Liu et al. (2022a). It requires as input a set of candidate routes for each

OD pair and a constant α that reflects cyclists’ preference between bike-lane continuity

and bike-lane coverage along the routes. Following Liu et al. (2022a), we set the value of

α to 1.05. We generate three candidate routes for each OD pair by solving three shortest

ec20 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.1 A synthetic grid network. Network components that are highlighted in black or dark grey constitute

a low-stress network while others are high-stress.

Figure EC.2 Negative exponential (EXP), rectangular (REC), and linear (LIN) impedance functions, and their

piecewise linear approximations (APP).

path problems on the overall network using different edge travel cost. Specifically, we con-

sider i) randomly generated travel time (Section EC.1), ii) Euclidean distance between the

two ends, and iii) a uniform cost of 1 for all arterial roads and a uniform cost of 10 for

other roads. The first and second definitions correspond to the goals of time minimization

and distance minimization, both are commonly used by map software to generate route

recommendations. The third definition reflects the preference for biking on major roads.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec21

EC.7.3. Predictive Features

EC.7.3.1. Learned features. We apply the representation learning technique intro-

duced in Section 5 to learn OD-pair features for MaxANDP. Implementation details are

illustrated as follows.

• Relationship Graph Construction. We sample nsim leader decisions for constructing

the relationship graph. Ideally, the leader decisions should be sampled considering a spe-

cific design budget. However, the MaxANDP will be solved with various budgets in the

computational studies (and in real-world transportation planning settings). Learning fol-

lower features multiple times may incur considerable computational burdens. Therefore, we

consider learning features that are applicable to MaxANDP instances with different bud-

gets by tweaking the leader decision sampling procedure. The high-level idea is to sample

leader decisions with budgets randomly generated from a “wide” range that covers most

budgets that may be used during the planning phase. As a result, the learned features con-

tain information about follower similarity under various design budgets. Specifically, our

leader-decision sampling procedure is parameterized by P̄ and Q̄ indicating, respectively,

the maximum number of projects and the maximum number of nodes that can be selected

in each sampled leader decision. Before generating a leader decision, we first randomly

generate the number of projects and the number of nodes to be selected from intervals

[1, P̄] and [1, Q̄], respectively. We then randomly select projects and nodes to form a leader

decision. The procedure is summarized in Algorithm 3. In our computational studies, we

set P̄ = 25, Q̄= 10, and nsim = 5,000. We present computational results about the impact

of nsim on feature quality in Section EC.7.8.

• Follower Embedding. In our computational study, we set nwalk = 50, nlength = 20, ω= 5,

and ξ = 16. We investigate the impact of ξ on feature quality in Section EC.7.8.

EC.7.3.2. TSP features. We adapt the features proposed by Liu et al. (2021) for

predicting TSP objective values. Specifically, each OD pair is assigned a nine-dimensional

feature vector whose entries are

• The coordinates of the origin.

• The coordinates of the destination.

• The Euclidean distance between the origin and the center of the grid.

• The Euclidean distance between the destination and the center of the grid.

ec22 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Algorithm 3 Sampling leader’s decision for our cycling network design problem

Input: Number of decisions nsim; Set of cycling infrastructure project P; Set of high-stress

nodes Nh, Maximum number of infrastructure project selected P̄ ; Maximum number of

nodes selected Q̄.

Output: A set of leader’s decisions X̄ .

1: Initialize X̄ = {}.

2: for i= 1 to nsim do

3: Generate p∼Uniform(1, P̄).

4: Generate q∼Uniform(1, Q̄).

5: Uniformly sample Pi ⊆P such that |Pi|= p.

6: Uniformly sample Qi ⊆Nh such that |Qi|= q.

7: Update X̄ ← X̄ ∪ {(Pi,Qi)}

• The Euclidean distance between the origin and the destination.

• The area of the smallest rectangular that covers both the origin and the destination.

• The travel time of the shortest path from the origin to the destination on the overall

network.

We perform a min-max normalization to scale each entry to [0,1].

EC.7.4. Follower Sampling Methods

We consider three follower sampling methods: i) vector assignment p-median sampling, ii)

uniform sampling, and iii) p-center sampling. Uniform sampling selects each follower with a

uniform probability, while the other two methods require solving an optimization problem.

We next introduce the algorithms that we adopt to solve the optimization problems.

EC.7.4.1. Vector assignment p-median sampling. We adapt the meta-heuristic

proposed by Boutilier and Chan (2020) for solving the classical p-median problem to solve

the vector assignment p-median problem introduced in Section 4.3.

Starting from a randomly generated initial solution T , the algorithm iterates between

a “swap” phase and an “alternation” phase for niteration iterations. In the swap phase, we

create a solution in the neighborhood of T by randomly removing one follower from T

and adding one follower from S\T to T . We update T if the neighbor solution achieves

a lower objective value for the vector assignment p-median problem. We perform at most

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec23

nswap such swaps in each iteration. In the alternation phase, for each follower t ∈ T , we
first find a follower set from S whose k-nearest neighbor in T includes t, and then solve an

1-median problem on this set. We solve in total |T | 1-median problems and their optimal

solutions form a new solution to the vector assignment p-median problem. We update T if

this solution achieves a lower objective value. The algorithm is summarized in Algorithm

4

Algorithm 4 A Meta-Heuristic for Solving the Vector-Assignment p-Median Problem

Input: A set of followers S; Follower features {f s}s∈S ; A distance metric in the feature

space dF ; Number of followers to select p; Number of medians each node is assigned to k;

Maximum number of iterations niteration; Number of swaps in each iteration nswap; An oracle

that calculates the objective value of the vector assignment p-median problem Op−median

for any given solution; An oracle that finds the k-nearest neighbor of a follower in a given

set OkNN.

Output: A set of selected followers T .

1: Randomly sample T ⊆ S such that |T |= p.

2: Initialize iteration counter minteration = 1

3: while miteration ≤ niteration do

4: for i= 1 to nswap do ▷ Swap

5: Randomly sample a follower s∈ S\T and a follower t∈ T .

6: Create a follower set T ′ = T \{t}∪ {s}

7: if Op−median(T ′)<Op−median(T) then update T ←T ′

8: Initialize a follower set T ′′ = {} ▷ Alternation

9: for t∈ T do

10: Create a follower set St = {s∈ S\T | t∈OkNN(s,T)}.

11: Solve an 1-median problem on St: s′′← argmins∈St

∑
l∈St dF(f

s, f l).

12: Update T ′′←T ′′ ∪{s′′}

13: if Op−median(T ′′)<Op−median(T) then update T ←T ′′

14: Update miteration←miteration +1

We note that the implementation of this meta-heuristic requires calculating the distance

between every pair of followers in the feature space. For S that is relatively small, we

ec24 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

pre-calculate and store the distance matrix of the followers. However, storing the distance

matrix (over 200 GB) in RAM is practically prohibitive for a large S (e.g. the MaxANDP

of Toronto’s road network). To tackle the challenge, we calculate the distances on the fly

when needed during the searching process. More specifically, we only calculate the distances

from the current “medians” to other followers, resulting in a much smaller distance matrix

that can be stored in RAM. A GPU with 24 GB of RAM (NVIDIA RTX6000) is employed

to accelerate the distance-matrix calculation.

EC.7.4.2. p-center sampling the p-center sampling select followers by solving the

follower problem

min
T ⊆S

{
max
s∈S\T

min
t∈T

dF(f
s, f t)

∣∣∣∣ |T |= p

}
(EC.26)

We adapt a greedy heuristic to solve this problem. Specifically, we initialize the follower

sample with a randomly selected follower s∈ S. Next, we iteratively select one unselected

follower and add it to the follower sample until p followers have been selected. In each

iteration, we first select calculate the shortest distance from each unselected follower to the

follower sample, and then select the follower with the largest distance. This greedy heuristic

generates 2-optimal solution for problem (EC.26). This is the best possible approximation

that a heuristic algorithm can provide for the p-center problem because, for any δ < 2,

the existence of δ-approximation implies P =NP (Gonzalez 1985, Hochbaum and Shmoys

1985). To empirically improve the solution quality, we apply this algorithm for nrepeat times

and select the one that achieves the lowest objective value for problem (EC.26). For the

computational experiments presented in Section 6, we set the value of nrepeat to 200. The

heuristic is summarized in Algorithm (5).

EC.7.5. Choosing L̄

Choosing a small L̄ will tighten the bound introduced in Theorem 2, but could lead to

overfitting or even worse, render problem (12) infeasible. We propose a practical approach

to iteratively search for an appropriate L̄. The search starts from a given L0, which is

estimated using data associated with randomly generated leader decisions, and then grad-

ually increases this value until the generated leader decision stops improving. The complete

solution approach is presented as Algorithm 6.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec25

Algorithm 5 A Greedy Heuristic for Solving the p-Center Problem

Input: A set of followers S; Follower features {f s}s∈S ; A distance metric in the feature

space dF ; Number of followers to select p; An oracle that calculates the objective value of

the p-center problem Op-center; Number of times the process is repeated nrepeat.

Output: A set of selected followers T .

1: for i= 1 to nrepeat do

2: Randomly sample a follower s∈ S.

3: Initialize follower sample Ti = {s}.

4: while |Ti| ≤ p do

5: Calculate the distances to the selected set ds =mint∈Ti dF(f
s, f t) for all s∈ S\Ti.

6: Select a follower s′ = argmaxs∈S\Ti d
s.

7: Update Ti = Ti ∪{s′}.

8: Select T = argmini=1∈[nrepeat]Op-center(Ti)

EC.7.6. Computational Setups

All the algorithms were implemented using Python 3.8.3 on an Intel i7-8700k processor

at 3.70 GHz and with 16GB of RAM. Optimization algorithms were implemented with

Gurobi 9.1.2 (Gurobi Optimization, LLC 2022). The DeepWalk algorithm was implemented

with Gensim 4.1.2 (Řeh̊uřek and Sojka 2010). All the ML models for cycling accessibility

prediction were implemented with Scikit Learn 1.0.2 (Pedregosa et al. 2011).

EC.7.7. ML Model Implementation Details

For the four ML models we consider in Section 6, we select the hyper-parameters (if any)

based on the mean of median out-of-sample prediction performance over 1000 datasets.

We note that we do not create a validation set because the goal is to achieve as good

performance as possible on the out-of-sample follower set S\T . The generalization of the

ML models outside S is not of interest in our study. The Linear regression does not involve

any hyper-parameter. The neighborhood sizes of kNN , the regularization factors of the

lasso regression and ridge regression are summarized in Tables EC.1–EC.3, respectively.

EC.7.8. Additional Results on the Impact of Hyperparameters on Feature Quality

We focus on two hyperparameters that may affect the quality of the REP features: i)

feature dimensionality ξ, and ii) the number of leader decisions to sample nsim. The idea

ec26 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Algorithm 6 A solution method using the parametric regression-augmented model

Input: Step size lstep; Number of leader decisions to sample nd; Follower sample size p;

Follower features {f s}s∈S .

Output: A leader solution x̂reg.

1: Randomly sample nd feasible leader solutions {xi ∈X}nd
i=1.

2: for i= 1 to nd do

3: Generate dataset Di = {f s,Gs(xi)}s∈S .

4: Randomly select a training set Dtrain
i ⊆Di such that |Dtrain

i |= p.

5: Train a prediction model Pi,k : Rξ→R on Dtrain
i .

6: Calculate the training loss ei =
1

|Dtrain
i |

∑
fs,Gs(xi)∈Dtrain

i
|Pi,k(f

s)−Gs(xi)|.

7: Select a starting point L0 =median{e1, e2, . . . , end
}.

8: Obtain T by solving Problem (13).

9: Obtain an initial solution x0 by solving Problem (12) with L0 and T .

10: Initialize step counter s= 1

11: repeat

12: Update Ls =Ls−1+ lstep.

13: Obtain xs by solving Problem (12) with Ls and T .

14: until F (xs)>F (xs−1).

15: Select the best solution x̂reg = xs−1.

Table EC.1 Neighborhood sizes of k-nearest neighbor regression.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

TSP
100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

is to first use a relatively large nsim, which makes sure the embedding algorithm is well-

informed about the relationship between followers, to find the smallest ξ that supports ML

models to achieve “good” prediction performance. We want ξ to be small because it helps

to reduce the size of the ML-augmented model. Once a ξ is chosen, we then search for a

small nsim that makes the learned features perform well. We want nsim to be small because

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec27

Table EC.2 Regularization parameters of lasso regressions.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 0.004 0.008 0.020 0.020
300 0.004 0.008 0.010 0.020
500 0.004 0.006 0.010 0.020

TSP
100 0.006 0.010 0.040 0.020
300 0.008 0.010 0.030 0.030
500 0.007 0.010 0.020 0.040

Table EC.3 Regularization parameters of ridge regressions.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 50 60 40 30
300 50 40 10 60
500 30 20 10 100

TSP
100 260 240 140 150
300 210 170 170 150
500 150 150 150 100

it reduces the computational efforts in constructing the follower relationship graph. We

focus on the prediction performance of kNN using UNI samples because kNN constantly

achieves the best prediction performance among all ML models considered.

EC.7.8.1. The impact of ξ. We follow the convention to set the value of ξ to the

powers of two. We vary ξ in {2,4,8,16} because the synthetic network has 3,526 followers

and the smallest training sample considered is 1% of them, corresponding to 35 followers.

Training linear regression models using 35 data points and features of 32 dimensions or

more may lead to serious overfitting issues. We set nsim to 5,000 when choosing ξ.

Figure EC.3 summarizes the predictivity of REP features of different dimensions. For

location-based accessibility measures, increasing the number of dimensions leads to lower

out-of-sample prediction error. For utility-based accessibility measures, REP features of

four dimensions achieve the lowest error when the sample size is 1% or 2% of the original

follower set, while 8- and 16-dimensional REPs become more predictive with larger training

samples. For convenience, we choose to set ξ = 16 for all accessibility measures. However,

based on the results presented in Figure EC.3, carefully tuning ξ for different problems

may improve ML models’ out-of-sample prediction accuracy.

EC.7.8.2. The impact of nsim. We then fix ξ = 16 and vary nsim in {10, 100, 1,000,

5,000}. Figure EC.4 summarizes the predictivity of REP features learned with different

ec28 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.3 Out-of-sample prediction performance of kNN using REP features of two, four, eight, and 16

dimensions.

nsim. In general, considering more leader decisions lead to better prediction performance of

the REP features, but the marginal improvement decreases as nsim increases. For location-

based accessibility measures, the improvement from nsim = 100 to nsim =5,000 is negligible

compared to the improvement from nsim = 10 to nsim = 100. For the utility-based measure,

REP features learned with nsim=1,000 is as predictive as REP features learned with nsim =

5,000.

Figure EC.4 Out-of-sample prediction performance of kNN using REP features learned using 10, 100, 1000, and

5000 sampled leader decisions.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec29

EC.7.9. Additional Results of Experiment 1

The performance profile of different sampling methods when using TSP features is pre-

sented in Figure EC.5. Similar to REP features, TSP features also achieve the lowest

normalized MAE when using BMED samples. BMED samples also help to reduce the

variance in prediction accuracy compared to other sampling methods. These results com-

bined with those presented in Section 6.2 highlight the effectiveness and robustness of our

sampling method.

Figure EC.5 Mean normalized MAE (± 95% confidence interval) over 3,000 network designs for each accessibility

measure using kNN, lasso, and ridge regressions with TSP features. Sampling methods are coded

by colors.

EC.7.10. Additional Results of Experiment 2

The full computation results from experiment 2 are visualized in Figure EC.6, including

kNN-CEN, LR-CEN, and Reduced-CEN which are omitted in Section 6.3 for brevity.

Overall, the performance of CEN samples is quite similar to that of UNI samples, with an

exception for LIN instances where CEN samples are competitive with MED samples for

both the reduced model and the ML-augmented models.

ec30 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.6 Optimality gap of leader decisions from the three sampling-based models on the 12 problem

instances using UNI, MED, and CEN samples.

EC.8. Case Study Details

EC.8.1. Network Construction and Pre-Processing

We retrieve Toronto centerline network from Toronto Open Data Portal (City of Toronto

2020). We follow the following steps to process the network data.

1. We remove roads where cycling is physically impossible or legally prohibited, including

“highway”, “highway ramp”, “railway”, “river”, “hydro line”, “major shoreline”, “major

shoreline (land locked)”, “geostatistical line”, “creek/tributary”, “ferry lane” per the City’s

definition.

2. We remove all redundant nodes. A node is considered redundant if it is not an end of

a road or an intersection of three or more edges. These nodes are included in the original

network to depict the road shape, but are unnecessary from a modeling perspective.

3. We replace local roads with low-stress edges that connect DA centroids to intersec-

tions along arterial roads. We solve a shortest-path problem from each DA centroid to

each intersection located on its surrounding arterial roads using the low-stress network. If

a low-stress path is found, we add a bi-directional low-stress edge that connects the DA

centroid and the intersection and set its travel time to the travel time along the path. All

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec31

local roads are then removed because we do not consider building new cycling infrastruc-

ture on local roads, and the role of local roads in our problem is to connect DA centroids

to arterial roads, which can be served by the added artificial edges. The node and edge

removal procedures are illustrated in Figure EC.7.

Figure EC.7 The procedures of removing redundant nodes and edges.

4. We group arterial edges to form candidate projects. A candidate project is defined as

a continuous road segment that connects two adjacent intersections of arterial roads. Such

a road segment may be represented as multiple arterial edges in the network due to the

presence of arterial-local intersections. Grouping these edges together allows us to create

fewer road design variables. The average length of the projects is 1.48 km.

5. Each DA is represented by its geometric centroid and is manually connected to its

nearest point in the cycling network using a low-stress edge with zero travel time.

6. We discard all the OD pairs that are currently connected via a low-stress path because

building new cycling infrastructure will not affect the accessibility of these OD pairs.

EC.8.2. Follower Embedding Details

We apply similar procedures as introduced in Section EC.7.3 to learn follower features. We

highlight the key difference in each step as follows.

• Relationship Graph Construction. We sample nsim =10,000 leader decisions with P̄ =

300 and Q̄ = 100. We note that 149,496 (11.3%) of the 1,327,849 OD pairs have zero

accessibility under all sampled leader decisions. As a result, their similarities to other OD

pairs are all zero according to the adopted similarity measure. These OD pairs are mostly

outside downtown Toronto, where the road networks are highly stressful. Connecting these

ec32 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

OD pairs with low-stress routes requires constructing a large amount of new cycling infras-

tructure, which is beyond the considered budget (100 km). We choose to exclude these OD

pairs from OD pair embedding and thus exclude them from OD pair selection and ML-

augmented model to avoid the computational burdens of sampling more leader decisions.

However, we do take these OD pairs into consideration when evaluating leader decisions.

• Follower Embedding. We set nwalk = 50, nlength = 50, ω= 5, and ξ = 32.

EC.8.3. Computational Setups

Optimization algorithms were implemented with Python 3.8.3 using Gurobi 9.1.2 (Gurobi

Optimization, LLC 2022) on an Intel i7-8700k processor at 3.70 GHz and with 16GB of

RAM. The heuristic for solving vector-assignment p-median problem is accelerated with

h an NVIDIA P100 GPU. The DeepWalk algorithm was implemented with Gensim 4.1.2

(Řeh̊uřek and Sojka 2010).

For optimal network expansions, we use follower samples of 2,000 followers (OD pairs),

and solve the kNN-augmented model with them. We use the kNN-augmented model

because the network design budget (≤ 100 km) falls into the small budget regime, where

the kNN-augmented model generally outperforms the linear regression-augmented as pre-

sented in Section 6.3. We set the solution time limit to 3 hours for all optimization models.

The greedy network expansion is implemented using the same machine as used by the

optimization models and is parallelized using eight threads.

EC.8.4. Comparison between Greedy and Optimal Expansions

Figure EC.8 presents the cycling infrastructure projects selected by the greedy heuris-

tic and our approach given a road design budget of 70 km, as an example. The optimal

expansion is 11.2% better than the heuristic expansion as measured by the improvement in

Toronto’s total low-stress cycling accessibility. Both algorithms choose many cycling infras-

tructure projects in the downtown core area, where a well-connected low-stress cycling

network has already been constructed, and where job opportunities are densely distributed.

These projects connect many DAs to the existing cycling network and thus grant them

access to job opportunities via the existing network. However, unlike the greedy heuris-

tic that spends almost all the road design budgets to expand the existing network, our

approach identifies four groups of projects that are not directly connected to the existing

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec33

network (as highlighted by the black frames in Figure EC.8). The greedy heuristic does

not select these projects because they have little impact on the total cycling accessibility if

constructed alone. However, when combined, these projects significantly improve the acces-

sibility of their surrounding DAs by breaking the high-stress barriers between low-stress

cycling islands.

Figure EC.8 Greedy and optimal expansions given a road design budget of 70 km.

	Introduction
	Problem Motivation: Cycling Infrastructure Planning
	Technical Challenge
	Contributions
	Literature review
	Integration of Machine Learning and Optimization
	Scenario Reduction in Stochastic Programming
	Strategic Cycling Infrastructure Planning
	Model Preliminaries
	The Bilevel Model
	Reduced Model
	ML-Augmented Model
	Integrating a Prediction Model
	Function Classes
	Non-parametric regression.
	Parametric regression.

	Theoretical Properties
	Prediction model setup.
	Assumptions.
	Bound on non-parametric regression-augmented model solution.
	Bound on parametric regression-augmented model solution.

	Practical Implementation
	Non-parametric regression-augmented model.
	Parametric regression.

	Learning Follower Representations
	Relationship Graph Construction
	Follower Embedding
	Theoretical Justification for using the DeepWalk framework

	Computational Study: Algorithm Performance on Synthetic Cycling Network Design Problem
	Maximum Accessibility Network Design Problem
	Experiment 1: Predicting OD-Pair Accessibility Using ML Models
	Experiment 2: Generating Leader Decisions using ML-augmented Models
	Case Study: Cycling Infrastructure Planning in the City of Toronto
	Cycling Network in Toronto
	Expanding Toronto's Cycling Network
	Conclusion
	Proofs of Solution Quality Bounds
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Bound Tightness Results
	Proof of Proposition 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proofs of Representation Learning Results
	Proof of Lemma 1
	Proof of Proposition 2
	ML-Augmented Model with Alternative Loss Functions
	Lg loss
	Lg loss
	Formulation of MaxANDP using Location-Based Accessibility Measures
	Solution Method for MaxANDP using Location-Based Accessibility Measures
	Benders Decomposition
	Pareto-Optimal Benders Cut
	Other Acceleration Strategies
	Hyper-parameter tuning for the ML-augmented Model
	Alternative Approach to Select k
	Computational Study Details
	The Synthetic Grid Network
	Accessibility Calculations
	Location-based accessibility measures.
	Utility-based accessibility measure.

	Predictive Features
	Learned features.
	TSP features.

	Follower Sampling Methods
	Vector assignment Lg-median sampling.
	Lg-center sampling

	Choosing Lg
	Computational Setups
	ML Model Implementation Details
	Additional Results on the Impact of Hyperparameters on Feature Quality
	The impact of Lg.
	The impact of Lg.

	Additional Results of Experiment 1
	Additional Results of Experiment 2
	Case Study Details
	Network Construction and Pre-Processing
	Follower Embedding Details
	Computational Setups
	Comparison between Greedy and Optimal Expansions

