
Machine Learning-Augmented Optimization of Large
Bilevel and Two-stage Stochastic Programs: Application

to Cycling Network Design

Timothy C. Y. Chan, Bo Lin
Department of Mechanical & Industrial Engineering, University of Toronto, {tcychan, blin}@mie.utoronto.ca,

Shoshanna Saxe
Department of Civil & Mineral Engineering, University of Toronto, s.saxe@utoronto.ca,

A wide range of decision problems can be formulated as bilevel programs with independent followers, which

as a special case include two-stage stochastic programs. These problems are notoriously difficult to solve

especially when a large number of followers present. Motivated by a real-world cycling infrastructure planning

application, we present a general approach to solving such problems. We propose an optimization model

that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate

the objective values of unsampled followers. We prove bounds on the optimality gap of the generated leader

decision as measured by the original objective function that considers the full follower set. We then develop

follower sampling algorithms to tighten the bounds and a representation learning approach to learn follower

features, which are used as inputs to the embedded machine learning model. Through numerical studies,

we show that our approach generates leader decisions of higher quality compared to baselines. Finally, in

collaboration with the City of Toronto, we perform a real-world case study in Toronto where we solve

a cycling network design problem with over one million followers. Compared to the current practice, our

approach improves Toronto’s cycling accessibility by 19.2%, equivalent to $18M in potential cost savings.

Our approach is being used to inform the cycling infrastructure planning in Toronto and outperforms the

current practice by a large margin. It can be generalized to any decision problems that are formulated as

bilevel programs with independent followers.

Key words : bilevel optimization; two-stage stochastic programming; machine learning-augmented

optimization; cycling infrastructure planning; sustainability.

1. Introduction

This paper is concerned with solving bilevel programs with a large number of followers and

where the feasible region of the leader is independent of the followers. The leader seeks

to find a solution that minimizes the total cost of all followers whose decisions depend

on both the leader’s decision and their own objectives and constraints. A wide range of

decision problems can be modeled this way, including transportation network design (Liu

et al. 2019, 2022a, Lim et al. 2021), energy pricing (Zugno et al. 2013), and portfolio

1

ar
X

iv
:2

20
9.

09
40

4v
4

 [
m

at
h.

O
C

]
 5

 F
eb

 2
02

5

2

optimization (Carrión et al. 2009, Leal et al. 2020). The main challenge stems from having

to model a large number of follower problems to evaluate the leader’s decision. Our method

was driven by a real cycling infrastructure planning application in Toronto, Canada that

involves over one million followers.

1.1. Problem Motivation: Cycling Infrastructure Planning

Cycling has become an increasingly popular transportation mode due to its positive impact

on urban mobility, public health, and the environment. During the COVID-19 pandemic,

cycling popularity increased significantly since it represented a low-cost and safe alternative

to driving and public transit, while also improving access to essential services (Kraus and

Koch 2021). However, safety and comfort concerns remain major barriers to cycling uptake

globally (Dill and McNeil 2016). Building high-quality cycling infrastructure is among the

most effective ways to alleviate cycling stress (Buehler and Dill 2016), but its implemen-

tation is often constrained by limited financial and human resources. In this paper, we

develop a bilevel model to optimize the locations of new cycling infrastructure. This model

maximizes a transportation metric called “low-stress cycling accessibility”, defined as the

total amount of “opportunities” (e.g., jobs) accessible by individuals via streets that are

low-stress (i.e., safe for cycling). This metric has been shown to be predictive of cycling

mode choice (Imani et al. 2019) and is used to assess existing and new cycling infrastructure

in Toronto (City of Toronto 2021a,b). In our bilevel model, the leader is a transportation

planner who designs a cycling network subject to an infrastructure budget (e.g., 100 km),

assuming cyclists will use the low-stress network to travel to opportunities via shortest

paths. The followers correspond to all possible origin-destination pairs between units of

population and opportunity. The resulting formulation for Toronto includes over one mil-

lion origin-destination pairs between 3,702 geographic units known as census dissemination

areas (DAs). This model is very large, and commercial solvers struggle to find a feasible

solution, motivating the development of our method.

1.2. Technical Challenge

Having a large set of followers S adds to the already difficult task of solving bilevel prob-

lems as it drastically increases the problem size. As we show later, the bilevel problem

we consider generalizes two-stage stochastic programming when the leader and follower

3

objectives are identical. As a result, we can draw on approaches from both communities

to deal with large S. Thus, in this paper, readers should think of “leader” in a bilevel pro-

gram and “first-stage decision maker” in a two-stage stochastic program as synonymous,

and similarly for “follower” and “second-stage decision maker”. As we discuss the bilevel

or stochastic programming literature below, we use the corresponding terminology. Two

predominant strategies to dealing with large S are: (1) solving the problem with a small

sample of S, and (2) approximating follower costs without explicitly modeling the follower

problems.

Sampling a smaller follower set can be done via random sampling (Liu et al. 2022a) or

clustering (Bertsimas and Mundru 2023). Given a sample T ⊆ S, a feasible leader solution

can be derived by solving a reduced problem that minimizes the total cost of followers in

T . The reduced problem is easier to solve because its size only depends on |T |. However,

there is no theoretical guarantee on the performance of the obtained leader solution with

respect to the original problem’s objective (i.e., the total cost of followers in S).

For the second strategy, many different algorithms have been developed to approximate

the followers’ cost. For example, machine learning (ML) methods have been used to predict

the second-stage cost based on the first-stage decision (Mǐsić 2020, Liu et al. 2021). A

feasible first-stage solution can then be obtained by solving a surrogate problem that

minimizes the output of the trained ML model. Alternatively, the solution of the second-

stage problems may be replaced with decision rules that are easier to optimize (Chen

et al. 2008). However, both approaches have limitations. The former method requires the

surrogate problem to both be tractable (which often necessitates using simple ML models

like linear regression) and achieve strong predictive performance—a combination that is

hard to achieve in practice. On the other hand, using decision rules may lead to infeasible

follower solutions when the follower problem includes non-trivial constraints. Moreover,

neither method has optimality guarantees.

In this paper, building on both strategies, we propose an ML-augmented optimization

model that is both computationally tractable and capable of generating provably high-

quality solutions to the original problem. Specifically, our model explicitly considers a

sampled subset T ⊆ S and augments the objective function with an ML component that

approximates the cost of followers in S\T . Compared to pure sampling methods, the ML

component captures the broader impact of the leader’s decision, resulting in improved

4

solution quality for the original model. Unlike existing approximation methods that rely

on pre-trained ML models to map leader decisions to follower costs, our approach embeds

the ML model training directly into the bilevel program, so the choice of leader decision

influences the trained ML model. This simultaneous optimization and ML model training

framework enables the derivation of new theoretical guarantees for the leader’s solution.

1.3. Contributions

1. We develop an ML-augmented approach to solving bilevel optimization problems with

a large number of independent followers, which generalizes two-stage stochastic program-

ming as a special case (Section 3). We consider using the k-nearest neighbor regression and

general parametric regression models (Section 4.1). We develop theoretical bounds on the

quality of the leader decision from our ML-augmented model as evaluated on the original

objective function that considers with the full set of followers (Section 4.2).

2. Informed by our theoretical insights, we develop practical strategies to enhance the

performance of the ML-augmented model, including i) a follower sampling algorithm to

tighten the theoretical bounds (Section 4.3), and ii) a representation learning method that

learns follower features that are predictive of follower objective values (Section 5.2).

3. We demonstrate the effectiveness of our approach via computational studies on a

cycling network design problem (introduced in Section 5.1). We show that i) our learned

features are more predictive of follower objective values compared to baseline features

from the literature; ii) our follower sampling algorithms further improve the ML mod-

els’ out-of-sample prediction accuracy by a large margin compared to baseline sampling

methods (Section 5.3); iii) our strong predictive performance translates into high-quality

and stable leader decisions from the ML-augmented model. The performance gap between

our approach and sampling-based models without the ML component is particularly large

when the follower sample is small (Section 5.4).

4. In collaboration with the City of Toronto, we perform a real-world case study on

cycling infrastructure planning (Section 6). We solve a large-scale cycling network design

problem where we compare our model against i) purely sampling-based methods that do

not use ML and ii) a greedy expansion method that closely matches real-world practice.

Compared to i), our method can achieve accessibility improvements between 5.8–34.3%.

Compared to ii), our approach can increase accessibility by 19.2% on average. If we consider

5

100 km of cycling infrastructure to be designed using a greedy method, our method can

achieve a similar level of accessibility using only 70 km, equivalent to $18M in potential

cost savings.

All proofs are in the Electronic Companion.

2. Literature review

Integration of ML and optimization. There has been tremendous growth in the combi-

nation of ML and optimization techniques. “Predict, then optimize” is a common modeling

paradigm that uses ML models to estimate parameters in an optimization problem, which is

then solved with those estimates to obtain decisions (Elmachtoub and Grigas 2022). Recent

progress has been made in using ML models to prescribe decisions based on contextual

features (Ban and Rudin 2019, Bertsimas and Kallus 2020), build end-to-end optimization

solvers (Khalil et al. 2017), and to speed-up optimization algorithms (Khalil et al. 2016,

Morabit et al. 2021). Closest to our work is the literature that integrates pretrained ML

models into the solution of optimization problems to map decision variables to uncertain

objective values (Mǐsić 2020, Liu et al. 2021). Our work differs in that we integrate the

ML model training directly into the optimization problem.

Bilevel optimization. Bilevel optimization is a modeling framework widely adopted in

many areas including transportation (Liu et al. 2022b), energy (Carvalho et al. 2024), and

marketing (Li et al. 2022). These problems are inherently difficult to solve due to their non-

convexity and non-differentiability (Colson et al. 2007). Classical solution methods typically

replace the follower problems with their optimality conditions and then solve the resulting

single-level model with algorithms, such as the L-shaped method (Birge and Louveaux

2011), the Kuhn-Tucker approach (Bard 2013), and penalty function methods (White and

Anandalingam 1993). However, they struggle to handle a large set of followers, as the size

of the single-level model scales with the number of followers, which is problematic when

the leader’s problem is hard, e.g., when it is non-convex. Existing studies have considered

reducing the problem size by only modeling a subset of followers, either selected randomly

(Liu et al. 2022a, Lim et al. 2021) or based on domain expertise (Zugno et al. 2013). Despite

its promise in improving tractability, the impact of sampling on solution quality remains

unexplored. To address this gap, we propose a method that leverages sampling and is

complemented by theoretical insights into the relationship between sampling and solution

6

quality. These insights lead to a sampling algorithm that enhances the performance of our

approach.

Scenario reduction. Scenario reduction has been extensively studied in the stochastic

programming literature. One stream of literature quantifies the similarity between individ-

ual scenarios and then applies clustering methods to select a subset. Common measures

include the cost difference between single-scenario optimization problems (Keutchayan

et al. 2023), the opportunity cost of switching between scenarios (Bertsimas and Mundru

2023), and the distance between scenario feature vectors (Crainic et al. 2014). Another

stream selects a scenario subset by minimizing the discrepancy between the distributions

described by the two sets as measured using the Wasserstein distance (Bertsimas and

Mundru 2023) and Fortet-Mourier metrics (Dupačová et al. 2003). More recently, ML has

been used to predict the most “representative” scenario (Bengio et al. 2020) and construct

scenario representations to support scenario clustering (Wu et al. 2022).

While our follower selection method is in the spirit of scenario reduction, it has a differ-

ent goal. Scenario reduction focuses on “solution stability”, ensuring that the first-stage

solution and optimal value given by the reduced model are similar to those of the original

model with the full scenario set. In contrast, we emphasize “solution quality”, ensuring

that the first-stage solution from our model is of high quality as evaluated on the original

model. This distinction arises because, in our application, the full scenario set represents

the actual population of interest, whereas in two-stage stochastic programming, it typically

approximates an (unobservable) true distribution. Consequently, solution quality is par-

ticularly important in our setting, driving new theoretical analyses and the development

of new sampling algorithms.

Cycling infrastructure planning. Previous studies on cycling infrastructure plan-

ning have considered a variety of approaches. Many papers greedily choose road seg-

ments to install cycling infrastructure using expert-defined metrics (Olmos et al. 2020).

Optimization-based methods typically minimize the travel cost (Mauttone et al. 2017), or

maximize total utility (Liu et al. 2022a) or ridership (Liu et al. 2022b) of a large number

of origin-destination (OD) pairs. Due to the large problem size, such models are usually

solved heuristically. To the best of our knowledge, only Liu et al. (2022a) and Liu et al.

(2022b) solve the problems to optimality at a city scale by randomly sampling OD pairs or

7

restricting the routes that each OD pair can use. Our work adds to the literature by provid-

ing a computationally tractable method that can solve larger problems without restrictions

such as limited routes for each OD pair.

3. Model Preliminaries

In this section, we present the general bilevel problem of interest (Section 3.1), a reduced

version based on sampling (Section 3.2), and our ML-augmented model (Section 3.3). We

briefly summarize key notation used throughout the paper, which will be restated upon

their first introduction. Let S denote a set of followers, with T ⊆ S indicating a sampled

subset. The sizes of S and T are denoted by m and p, respectively. For a follower t ∈ T ,
let mt represent the weight assigned for calculating the ML training loss, and mt

k,S\T

be the number of followers in S\T whose k-nearest neighbors in T (measured using a

distance metric in the feature space) include follower t. We adopt the following notational

conventions: vectors and matrices are denoted in bold, sets in calligraphic font, the indicator

function by 1(·), [x]+ =max{0, x}, and [m] = {1,2, . . . ,m}.

3.1. The Bilevel Model

The following is the bilevel optimization problem of interest:

minimize
x,y1,...,ym

f(x)+
∑
s∈S

qsg(x,ys) (1a)

subject to ys ∈ argmin
y∈Ys(x)

hs(x,y), ∀s∈ S (1b)

x∈X . (1c)

Let x denote the leader’s decision with a bounded, closed feasible set X ⊆ Rn1 and cost

function f : Rn1→R. Let S be a set ofm followers, ys ∈Rn2 be the decision of follower s∈ S,
g : Rn1+n2 → R+ measure the cost of a follower’s decision, and qs ∈ R+ be a nonnegative

weight. We assume each follower s∈ S is optimizing an objective function hs : Rn1+n2→R

subject to a non-empty feasible set Ys(x)⊆Rn2 that depends on the leader’s decision.

3.1.1. Connection to Two-Stage Stochastic Programs When g and hs are iden-

tical for all s ∈ S, Problem (1) generalizes a two-stage stochastic program with discrete

random variables

minimize
x,y1,...,ym

f(x)+
∑
s∈S

qsg(x,ys)

8

subject to ys ∈Ys(x), ∀s∈ S

x∈X ,

where the decisions of the leader and followers correspond to the first-stage and second-

stage decisions, respectively, S is the set of second-stage scenarios, and qs (suitably nor-

malized) is the probability of realizing scenario s.

The benefits of this connection are twofold. First, it inspired the development of The-

orems 1 and 2, which characterize the impact of follower sampling on leader solution

quality—a type of result commonly seen in the two-stage stochastic programming literature

(Bertsimas and Mundru 2023, Römisch and Schultz 1991) but new to bilevel programming.

Second, since our bilevel model is more general, the proposed method is also applicable to

two-stage stochastic programming, offering a new solution method and theoretical guar-

antees as discussed in Section 3.2.

3.1.2. Simplifying the notation. To simplify the notation, we write Problem (1) as

min
x∈X

F (x), (2)

where

F (x) := f(x)+
∑
s∈S

qsGs(x) (3)

and

Gs(x) :=min
ys

{
g(x,ys)

∣∣∣∣∣ys ∈ argmin
y∈Ys(x)

hs(x,y)

}
, ∀s∈ S. (4)

Let x∗ ∈ argminx∈X F (x) be an optimal solution to Problem (2). We assume Gs(x) is

bounded for any s ∈ S and x ∈ X . This is a standard condition that renders Problem (2)

well-defined. Without loss of generality, let Ḡ∈R+ be a constant such that 0≤Gs(x)≤ Ḡ

for any s∈ S and x∈X .

3.2. Reduced Model

A common idea to improve the computational tractability of Problem (2) is to sample a

subset of S. Given a sampled follower set T ⊆ S, we consider the following reduced problem

min
x∈X

F̄T (x), (5)

9

where

F̄T (x) := f(x)+
∑
t∈T

rtGt(x), (6)

Gt(x) is as defined in (4), and the weight assigned to scenario t ∈ T , rt ∈ R+, may be

different from qt, due to re-weighting. Let x̄T be an optimal solution to Problem (5).

For two-stage stochastic programming, stability results have been established for Prob-

lem (5). For example, it is possible to bound |F (x∗)− F̄T (x̄T)| (Bertsimas and Mundru

2023) and ∥x∗ − x̄T ∥ (Römisch and Schultz 1991). However, bounds on |F (x∗)− F (x̄T)|,

which we develop in this paper, have only recently been studied (Zhang et al. 2023) and

in a more restricted setting.

3.3. ML-Augmented Model

Given a sampled follower set T ⊆ S, we propose the following ML-augmented model

minimize
x∈X ,P∈P

f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

qsP (f s) (7a)

subject to
∑
t∈T

mt
∣∣P (f t)−Gt(x)

∣∣≤ L̄. (7b)

We augment the reduced model by integrating an ML model P : Rξ→R that predicts the

cost of follower s ∈ S based on a feature vector f s ∈Rξ. We use P to denote the function

class of ML models, and L̄ ∈ R+ to indicate a user-defined upper bound on the training

loss. A user-defined weight mt is assigned to each follower t ∈ T when calculating the

training loss. The training of P on dataset {f t,Gt(x)}t∈T is embedded into the problem

via the training loss constraint (7b). When the ML model can be compactly represented,

Problem (7) only adds a small number of decision variables and constraints to the reduced

model (detailed in Section 4). Nevertheless, it is expected to generate better leader decisions

than the reduced model because the ML prediction helps to capture the impact of leader

decisions on out-of-sample followers in S\T . Additionally, Problem (7) typically retains the

structure of the original bilevel model. Thus, algorithms designed for the original model

may still be applicable, further improving the tractability of Problem (7).

Remark 1 (Choice of Loss function). In Problem (7), we use the L1 loss because

the resulting model can be easily linearized. However, using other loss functions is also

possible and would not invalidate our theoretical results. For example, with the l2 loss,

10

similar solution quality guarantees (Theorem 2) can be derived by exploiting the fact that

the l1 loss can be upper-bounded by a function of the l2 loss, which follows directly from

the Cauchy-Swartz inequality.

Remark 2 (Relationship between P and x). During the solution of Problem (7), the

ML model P can be adjusted on-the-fly according to the leader decision x since both P

and x are decision variables. These decisions are connected through constraint (7b), which

requires the ML model to achieve a low training loss for any leader decisions. It is necessary

to embed the training of P into Problem (7) because, otherwise, the ML-model prediction

would become a constant and thus Problem (7) would be equivalent to the reduced model.

We emphasize that P is not pre-trained. It is trained simultaneously as x is optimized by

optimizing the weights in model P .

Remark 3 (Relationship between f and x). Problem (7) can be generalized by

including x as an input to P , replacing P (f) with P (f ,x). When P is non-parametric (e.g.,

kNN), the resulting formulation is equivalent to the current model, as the x component is

identical across all followers, and the distance between followers is determined solely by the

f component. When P is parametric (e.g., linear regression), incorporating x enhances the

sensitivity of cost predictions to changes in x, enabling it to better distinguish subtle differ-

ences between leader decisions. In contrast, in our current model, the ML prediction may

be the same for similar leader decisions as the ML model trained for one leader decision

may satisfy the training loss constraint under the other. However, the primary drawback

of using P (f ,x) is the introduction of bilinear terms, i.e., the product of ML model weights

and leader decisions, which would negatively affect the tractability of Problem (7). Given

the emphasis on computational efficiency in our real-world application, we focus on ML

models that only take f as input, leaving the incorporation of x for future research. Despite

this simplification, our models still demonstrate strong performance compared to baselines

(Sections 5.4 and 6).

Problem (7) provides a general structure for our modeling approach. Its effectiveness

depends on multiple factors: i) function class P, ii) weighting scheme mt and upper bound

L̄, iii) sample T , and iv) availability of predictive follower features f s, s ∈ S. We address

the first three items in Section 4 and the fourth in Section 5.2.

11

4. Integrating a Prediction Model

In Section 4.1, we introduce two classes of prediction models – one non-parametric (kNN)

and one parametric – that are compatible with our ML-augmented model. We provide the-

oretical bounds on performance in Section 4.2. Finally, we present algorithms and discuss

practical implementation, based on insights from examining the bounds, in Section 4.3.

4.1. Function Classes

4.1.1. k-nearest neighbor regression. For any fixed x, let

P (f s) =
1

k

∑
t∈Tk(fs)

Gt(x) (8)

where k denotes the the neighborhood size and Tk(f s)⊆T contains the k-nearest neighbors

of follower s in the sampled set T . Since the kNN regression does not require training, we

do not need constraint (7b). Equivalently, we can simply set L̄=∞. Then, Problem (7)

becomes

minimize
x∈X

f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

∑
t∈Tk(fs)

qs

k
Gt(x). (9)

Note that our ML-augmented model is also compatible with other non-parametric predic-

tion models, such as locally weighted regression (Cleveland and Devlin 1988) and kernel

regression (Parzen 1962), which assign non-uniform weights to nearest neighbors. How-

ever, these models would require training, which necessitates including the “weights” as

decision variables in Problem (7), leading to bilinear terms (i.e., the product of “weights”

and Gt(x)) that hinder the model’s computational tractability. Since our main focus is to

improve the bilevel model’s computational tractability, we leave the integration of more

sophisticated non-parametric models for future work.

4.1.2. Parametric regression. Consider a parametric regression model P (f s;θ)

parameterized by θ ∈Θ. Then, Problem (7) becomes

min
x∈X ,θ∈Θ

f(x)+
∑
t∈T

qtGt(x)+
∑

s∈S\T

qsP (f s;θ)

∣∣∣∣∣∣
∑
t∈T

mt
1,S\T

∣∣Gt(x)−P (f t;θ)
∣∣≤ L̄

 , (10)

where mt
1,S\T is the number of followers in S\T whose nearest neighbor in T is t. While

users may choose any weighting scheme for calculating the training loss, in this paper, we

set mt =mt
1,S\T to ensure that our theoretical results in Section 4.2 hold. The intuition is

12

that a training data point should receive a higher weight if it has more “similar” test data

nearby. This principle has been applied in many ML contexts, e.g., domain adaptation

(Kouw and Loog 2019).

For Problem (10) to be effective, one should choose a function class that can be compactly

represented with θ and f . For example, a linear regression model P (f ;θ) = θ⊺f can be

incorporated using only ξ additional continuous decision variables θ ∈ Rξ. An additional

set of |T | variables and 2|T |+1 linear constraints are needed to linearize the L1 training

loss. Such a representation is roughly in the same complexity class as the reduced model (5)

when ξ and |T | are small.

4.2. Theoretical Properties

4.2.1. Prediction model setup. We start by formally defining the prediction prob-

lem embedded in our ML-augmented model. For any fixed leader decision x, we are inter-

ested in predicting a follower’s cost Gs(x) based on its features f s. We define this regression

problem in a feature space F ⊆ Rξ and a target space Gx ⊆ R. We denote by ηx (· | f) the

probability density function of the target variable given a feature vector f . We regard Gs(x)

as a random variable because the true mapping from features to this target may not be

deterministic. For example, consider a network design problem where the follower’s cost is

the length of the shortest path from an origin to a destination using the network designed

by the leader. If we use a one-dimensional binary feature that is 1 if both the origin and

destination are in downtown and 0 otherwise, then all downtown OD pairs share the same

feature value but with drastically different shortest path lengths.

4.2.2. Assumptions. Next, we introduce several assumptions that enable the deriva-

tion of our theoretical results in Sections 4.2.3 and 4.2.4.

Assumption 1. For any followers s, s′ ∈ S, s ̸= s′ and leader decisions x1,x2 ∈X , the target

(random) variables with distributions ηx1(· | f s) and ηx2(· | f s
′
) are independent.

Assumption 2. There exists a constant µ ∈ R+ such that, for any fixed leader decision

x∈X , EG∼ηx(· | f) [G | f] is µ-Lipschitz continuous with respect to f .

Assumption 3. There exists a constant λ∈R+ such that, for any fixed ML model parame-

ters θ ∈Θ, P (f ;θ) is λ-Lipschitz continuous with respect to f .

13

Assumption 1 implies that the follower set S is independently sampled. This assump-

tion is standard in the ML literature and holds for various applications. For example, in

transportation network design, OD pairs (followers) are usually independently sampled

from survey data or ridership data (Liu et al. 2022a,b). In two-stage stochastic program-

ming, second-stage scenarios are usually taken from historical observations that can be

regarded as independent samples (Birge and Louveaux 2011). Assumption 2 limits the

change in the expected follower cost as a function of the change in feature space. In other

words, similar followers (as measured by the distance between their feature vectors) should

have similar costs under any leader decisions. Similar assumptions are commonly made to

derive stability results for two-stage stochastic programming where the realized uncertain

parameters are used as follower features; See, for example, Assumption 4 in Bertsimas and

Mundru (2023) and Theorem 1 in Zhang et al. (2023). Assumption 3 limits the complex-

ity of P , which is critical to avoid overfitting since P is trained on a small dataset (T).

This condition can be enforced by adding regularization constraints to Θ. For example,

for linear regression, we can set Θ= {θ ∈ Rξ | ∥θ∥1 ≤ λ}. This assumption is needed only

for parametric regression models.

Next, we present theoretical bounds for the quality of leader decisions from the kNN

(Section 4.2.3) and parametric regression-augmented models (Section 4.2.4), and then fol-

lower selection methods that tighten the bounds (Section 4.3).

4.2.3. Bound on kNN-augmented model solution.

Theorem 1 (Bound on kNN-augmented model solution). Given a follower sample

T ⊆ S and a neighborhood size k ∈ {1,2, . . . , |T |}, let xkNN
T be an optimal solution to Problem

(9), dF be a distance metric in F , Q̄=maxs∈S\T qs, and mt
k,S\T =

∑
s∈S\T 1 [t∈ Tk(f s)]. If

Assumptions 1 and 2 hold, then, with probability at least 1−γ, F (xkNN
T)−F (x∗)≤EkNN

m (T)

where

EkNN
m (T) =

∑
s∈S\T

∑
t∈Tk(fs)

2µQ̄

k
dF(f

s, f t)+

√√√√√4Q̄2Ḡ2

|S\T |+∑
t∈T

(
mt

k,S\T

k

)2
 log(1/γ).

Theorem 1 bounds the optimality gap of the solution from the kNN-augmented model on

the original problem. The first term corresponds to the prediction bias and the second term

corresponds to the variance. The first term is proportional to the sum of the distances from

14

each f s to its k nearest neighbors in T . When the sample size |T | is fixed, the second term

is controlled by mt
k,S\T . Note that

∑
t∈T mt

k,S\T = |S\T |, so the second term is minimized

when the mt
k,S\T , t ∈ T are identical, which follows from the Cauchy-Schwarz inequality.

The intuition is that if the followers in S\T are evenly assigned to sample followers in T ,
then the overall prediction performance on S\T is less affected by the random deviation of

the individual cost of follower t, Gt(x), from its expected value. We note that EkNN
m (T) = 0

when T = S because in this case S\T = ∅ and mt
k,S\T = 0.

4.2.4. Bound on parametric regression-augmented model solution.

Theorem 2. Given a follower sample T ⊆ S, xPR
T be the optimal solution to Problem (10),

ν(s) be the nearest neighbor of f s in {f t}t∈T , and mt
1,S\T =

∑
s∈S\T 1[ν(s) = t]. If Assump-

tions 1–3 hold, with probability at least 1− γ, F (xPR
T)−F (x∗)≤EPR

m (T , L̄) where

EPR
m (T , L̄) = 2Q̄L̄1(T ⊂ S)+2Q̄(λ+µ)

∑
s∈S\T

dF(f
s, fν(s))+

√√√√4Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

Theorem 2 bounds the optimality gap of the leader’s solution from Problem (10) on

the original problem. The first term is controlled by the training loss L̄, while others are

controlled by T . To reduce the last two terms, T should be chosen such that followers

s∈ S\T are not too far from its nearest neighbor in T (second term) and the assignment

of followers in S\T to followers in T should be even (third term). Similar to EkNN
m (T),

EPR
m (T) converges to zero as T goes to S.

4.3. Practical Implementation

4.3.1. kNN-augmented model. Theorem 1 characterizes the impact of follower

selection on the quality of the leader’s decision from Problem (9). While one might be

tempted to select T by directly minimizing EkNN
m (T), solving this problem is challenging

due to the complex function form of the variance term. Instead, we propose to select T by

minimizing the more tractable bias term with constraints that aid in reducing the variance

term. Finally, we justify our sample selection by demonstrating the tightness of our bound

from Theorem 1 when our follower sample is used.

Specifically, we select follower samples by solving the following problem

T k
p,d := argmin

T ⊆S

 ∑
s∈S\T

∑
t∈Tk(fs)

dF(f
s, f t)

∣∣∣∣∣∣ |T | ≤ p, |S(t)| ≤ d,∀t∈ T

 , (11)

15

where S(t) = {s∈ S\T | t∈ Tk(f s)} denotes the set of unsampled followers that are assigned

to the sampled follower t∈ T according to the k-nearest neighbor rule, p is an upper bound

on the sample size imposed by the available computational resources, and d ≥ ⌈m/p⌉ is

a finite positive constant. The goal of solving Problem (11) is to minimize the bias term

in EkNN
m (T). The constraints |S(t)| ≤ d for t ∈ T induce more even assignment of the

unsampled followers to the sampled followers so that the variance term is reduced.

Next, we demonstrate the tightness of our bound in Theorem 1 when T k
p,d is used. We

focus on analyzing the case of k = 1 because the sample size p is usually small due to the

bilevel structure of the kNN-augmented model, implying that the optimal choice of k is

likely small (Stone 1977, Bickel and Breiman 1983). This conjecture is validated by our

empirical analysis based on cross-validation, which consistently yields the choice of k= 1.

Theorem 3. If (f1, f2, . . . , fm) is a sequence of i.i.d random vectors in [0,1]ξ following a

continuous density function, ξ ≥ 2, p=max{1, αm(ξ−1)/ξ} for some α ∈ (0,1], ⌈m/p⌉ ≤ d≤

β⌈m/p⌉ for some β ≥ 1, and γ ∈ (0,1], then

lim
m→∞

1

m
E1NN

m (T 1
p,d) = 0.

Theorem 3 states that even if EkNN
m (T) involves the sum of |S\T | terms, it grows sub-

linearly in |S|, which sheds light on the tightness of the bound. While Theorem 1 holds

for any T ⊆ S, Theorem 3 holds only for T 1
p,d, highlighting the importance of intelligent

sample selection. Theorem 3 requires the sample size to increase at a rate of m(ξ−1)/ξ,

which hints at the practical need to consider larger samples for larger problems. We show

in Section 5 that increasing the sample size generally leads to decisions of higher quality.

The rate of increase depends on ξ. We thus should use compact follower features whenever

possible. If high-dimensional features (ξ large) are necessary, the sample size would grow

almost linearly in |S|. But we would still expect a significant improvement in computation

time compared to solving the original problem when the leader/follower problems are non-

convex, since computation time would grow exponentially in problem size. Finally, the

assumption of f1, f2 . . . , fm being in [0,1]ξ is nonrestrictive as we can create this structure

by applying the min-max standardization to follower features.

16

4.3.2. Parametric regression. The bound in Theorem 2 is controlled by i) the sample

T and ii) the value of L̄. To select T , we consider minimizing the bias term in EPR
m (T , L̄) for

reasons discussed in the previous section. Since the bias terms in EPR
m (T , L̄) and E1NN

m (T)

are identical, we also use T 1
p,d as defined in Problem (11) as our follower sample. For L̄,

choosing a small value will reduce the bound, but could lead to overfitting or even worse,

render Problem (10) infeasible. We view L̄ as a hyperparameter that should be tuned and

provide an approach for doing so in EC.5.7.

Theorem 4. If (f1, f2, . . . , fm) is a sequence of i.i.d. random vectors in [0,1]ξ following a

continuous density function, where ξ ≥ 2, p = max{1, αm(ξ−1)/ξ} for some α ∈ (0,1], and

⌈m/p⌉ ≤ d≤ β⌈m/p⌉ for some β ≥ 1, L̄ is a finite positive constant, then

lim
m→∞

1

m
EPR

m (T 1
p,d, L̄) = 0.

Similar to Theorem 3, Theorem 4 comments on the tightness of the bound in Theorem 2

when the follower samples are selected using our approach.

5. Computational Study: Algorithm Performance on Synthetic Cycling
Network Design Problem

In this section, we validate the effectiveness of our ML-augmented model with our repre-

sentation learning framework on a cycling network design problem. Computational results

in this section are generated using synthetic problem instances for which the original bilevel

model (2) can be solved to optimality using a Benders decomposition method, allowing

accurate evaluation of the reduced model (5) and our ML-augmented models. We introduce

the problem and its formulation in Section 5.1, followed by a method for learning follower

features in Section 5.2. We present two experiments to validate the predictive power of the

learned follower features and the value of integrating an ML model in the optimization

problem in Sections 5.3 and 5.4, respectively.

5.1. Maximum Accessibility Network Design Problem

The goal of the maximum accessibility network design problem (MaxANDP) is to design a

cycling network subject to a fixed budget such that the total accessibility of a given set of

OD pairs, denoted by S, is maximized. Such a set may be defined based on geographical

units (Imani et al. 2019) or ridership data (Liu et al. 2022a). Various metrics have been

17

proposed to measure accessibility, mostly focusing on first finding one or more routes

between each OD pair using the designed network and then calculating the accessibility

based on the selected routes.

Let G = (N ,E) be a directed graph where E is the set of edges and N is the set of

nodes, corresponding to road segments and intersections, respectively. Each edge (i, j)∈ E
is assigned a travel time tij. We denote by E+(i) and E−(i) the sets of incoming and

outgoing edges of node i, respectively. Edges and nodes are partitioned into high-stress and

low-stress sets according to a cycling stress assessment based on road geometry, existing

infrastructure, and vehicle traffic conditions (Furth et al. 2016). We assume that cyclists

prefer cycling on low-stress roads over high-stress roads. Sets with subscripts h and l

indicate the high-stress and low-stress subsets of the original set, respectively. High-stress

edges (i, j) ∈ Eh and nodes i ∈ Nh are assigned costs cij and bi, respectively, representing

the costs of turning them into low-stress through building new infrastructure, e.g., cycle

tracks or traffic lights.

Let x∈ {0,1}|Eh| and z∈ {0,1}|Nh|, respectively, denote the edge selection and node selec-

tion variables (referred to as network design decisions), whose components are 1 if that

edge or node is chosen for the installation of infrastructure that makes it low stress. Edge

and node selections are subject to budgets Bedge and Bnode, respectively. Let y
od ∈ {0,1}|E|

denote the routing decision associated with OD pair (o, d) ∈ S. The routing problem on a

network specified by x and z is characterized by an objective function hod(x,z, ·) : {0,1}|E|→
R and a feasible set Yod(x,z) ⊆ {0,1}|E|. A function g(x,z, ·) : {0,1}|E| → R+ is used to

calculate the accessibility of each OD pair based on the selected route(s). Each OD pair is

weighted by a constant qod ∈R+ (e.g., population). The MaxANDP is formulated as

maximize
x,z,yod

∑
(o,d)∈S

qodg(x,z,yod) (12a)

subject to yod ∈ argmin
y∈Yod(x,z)

hod(x,z,y), (o, d)∈ S (12b)

c⊺x≤Bedge (12c)

b⊺z≤Bnode (12d)

x∈ {0,1}|Eh|,z∈ {0,1}|Nh|, (12e)

where c and b indicate cost vectors for high-stress edges and nodes, respectively. The

objective function (12a) maximizes total cycling accessibility. Constraints (12b) ensure that

18

the selected routes are optimal for the OD pairs’ objective functions. Constraints (12c)

and (12d) enforce budgets on the network design. We emphasize that followers in Prob-

lem (12) are independent of each other, in contrast to in other transportation network

design problems where the followers typically interact with each other via traffic equilib-

rium conditions. This is a common practice in cycling network design because i) unlike

motor traffic, cycling traffic congestion is less common in practice, and ii) the goal of

Problem (12) is not to model travel behavior, but to quantify network accessibility, i.e.,

how far a cyclist can reach in a specified time. The objective of Problem (12) has been

shown to be highly correlated with the cycling mode choice in the City of Toronto (Imani

et al. 2019), and is being used as an evaluation metric in support of cycling infrastructure

project prioritization (City of Toronto 2021b).

Many variants of Problem (12) have been proposed in the literature, corresponding

to different combinations of accessibility measure (specified by g) and routing problem

(specified by hod and Yod). To illustrate our method, we consider two problems: i) one

that uses location-based accessibility measures and shortest-path routing problems, and ii)

one proposed by Liu et al. (2022a) that employs a utility-based accessibility measure and

discrete route choice models. These two problems allow us to illustrate the generality of

our approach in terms of the follower cost function: the former problem has follower cost

g(y) and the latter uses g(x,z,y), that is, the leader decision is also included in the cost.

The former problem is locally more relevant in Toronto and we briefly describe it next. We

refer readers to Liu et al. (2022a) for more details on the latter problem.

Location-based accessibility measures use a decreasing function of the travel time from

origin to destination, namely an impedance function, to model the dampening effect of

separation. We consider a piecewise linear impedance function

g(yod) =

1− β1t

⊺yod, if t⊺yod ∈ [0, T1)

1− β1T1− β2

(
t⊺yod−T1

)
, if t⊺yod ∈ [T1, T2)

0, if t⊺yod ≥ T2,

(13)

where t indicates a vector of edge travel times, T1, T2 ∈ R+ are breakpoints, and β1, β2 ∈

R+ are penalty factors for intervals [0, T1) and [T1, T2), respectively. This function can be

used to approximate commonly used impedance functions, including negative exponential,

19

rectangular, and linear functions (visualized in EC.5.2). While we consider two breakpoints

for simplicity, the formulation can be easily generalized to account for more.

We use the level of traffic stress (LTS) metric (Furth et al. 2016) to formulate the routing

problems. Let A be the node-edge matrix describing the flow-balance constraints on G,
and eod be a vector whose oth and dth entries are 1 and −1, respectively, with all other

entries 0. Given network design (x,z), the routing problem for (o, d)∈ S is formulated as

minimize
yod∈{0,1}|E|

t⊺yod (14a)

subject to Ayod = eod (14b)

yodij ≤ xij, ∀(i, j)∈ Eh (14c)

yodij ≤ xwl + zi, ∀i∈Nh, (i, j)∈ E−h (i), (w, l)∈ E
−
h (i)∪E

+
h (i). (14d)

Objective function (14a) minimizes the travel time. Constraints (14b) direct one unit of

flow from o to d. Constraints (14c) ensure that a currently high-stress edge can be used

only if it is selected. Constraints (14d) guarantee that a currently high-stress node can be

crossed only if either the node is selected or all high-stress edges that are connected to

this node are selected. This is an exact representation of the intersection LTS calculation

scheme that assigns the low-stress label to a node if traffic signals are installed or all

incident roads are low-stress (Imani et al. 2019). To ensure Problem (14) is feasible, we

add a virtual low-stress link from o to d and set its travel time to T2. In doing so, the travel

time is T2 when the destination is unreachable on the low-stress network, corresponding

to zero accessibility, as defined in equation (13). The full formulation is in EC.3.

Solving Problem (12) is challenging due to the large number of discrete decisions in the

leader’s problem, which is further compounded by a large S. When using the location-

based accessibility measures defined in (13), we can adapt the the Benders decomposition

approach from Magnanti et al. (1986) to solve it (detailed in EC.4). When using the

utility based measure, we can apply the algorithm from Liu et al. (2022a). Although

these algorithms allow us to solve the original bilevel model to optimality for synthetic

instances (Section 5.4), they are insufficient for real instances with over one million followers

(Section 6), as the problem size grows quickly with |S|, necessitating the use of sampling

to reduce the problem size. Since Problem (7) shares the same structure as the general

bilevel model (2), we can use the reduced model (5) and our ML-augmented model (7) to

generate leader solutions for it.

20

5.2. Learning Follower Representations

Applying our ML-augmented model requires using follower features as inputs to the ML

model. In this section, we introduce a learning framework that maps the set of followers S

to a ξ-dimensional feature space. We present our approach in Section 5.2.1 and discuss its

alternatives in Section 5.2.2.

5.2.1. An NLP-inspired approach. The design of our follower embedding method

is informed by our theoretical analysis. Recall that the bounds in Theorems 1 and 2 depend

on the Lipschitz constant µ, which bounds the rate at which the follower cost changes as a

function of changes in the feature space. To reduce µ and thus tighten these bounds, it is

essential to construct a feature space where “similar followers” are mapped close to each

other. This insight draws an analogy to the Natural Language Processing (NLP) litera-

ture, where the problem of “pulling similar words together” has been extensively studied

(Mikolov et al. 2013, Radford et al. 2018). Next, we introduce a two-step framework that

transforms the follower representation problem into a word embedding problem, allowing

us to leverage well-established techniques in the NLP literature.

Step I: Relationship graph construction. We begin by constructing a relationship

graph R, where each node represents a follower, and each edge is weighted to reflect the

similarity between followers. Many metrics have been proposed to quantify such similarities,

with most focusing on the “opportunity cost” of switching between followers. For example,

Keutchayan et al. (2023) define the opportunity cost of applying the leader decision that is

optimal to scenario t in scenario s as d(s, t) =Gs(xt∗)−Gs(xs∗) where xs∗ and xt∗ denote the

optimal leader solutions obtained by solving the single-follower version of Problem (12) with

followers s and t, respectively. Building on a similar idea, Bertsimas and Mundru (2023)

define a symmetric metric for followers s and t as (d(s, t)+ d(t, s))/2. While these metrics

have been shown to be effective and are compatible with our framework, they require

solving |S| single-scenario versions of Problem (2), which is computationally expensive

when S is huge and when the leader’s problem is nonconvex.

Motivated by the fact that evaluating follower costs given a leader’s solution is com-

putationally cheaper, we propose a new approach that quantifies follower similarity based

on their costs under some sampled leader solutions. Specifically, we randomly sample nsim

leader decisions {xi ∈X}nsim
i=1 . For each sampled xi, we calculate the costs Gs

i :=Gs(xi) for

21

all followers s∈ S by solving their follower problems. We then define the weight of the edge

between followers s, t∈ S as

πst := exp

[
1

nsim

nsim∑
i=1

−|Gs
i −Gt

i|

]
. (15)

Step II: Follower embedding. Once R is constructed, we adapt the DeepWalk algo-

rithm proposed by Perozzi et al. (2014) to learn node representations. We first generate a

set of random walks in R, and then apply the SkipGram algorithm (Mikolov et al. 2013),

which was designed for learning word embeddings, to learn node features treating each

node and each random walk as a word and a sentence, respectively. Unlike Perozzi et al.

(2014), who generate random walks by uniformly sampling nodes connected to the current

node, we generate random walks according to the weights assigned to edges incident to the

current node. So, followers that yield similar results under the sampled leader decisions are

likely to appear in a same walk, and thus will be close to each other in the feature space.

5.2.2. Alternative approaches. To the best of our knowledge, the problem of learn-

ing follower features has not been studied in the literature. However, several ideas from

two-stage stochastic programming, continuous approximation, and graph theory may be

adapted to our context. Below, we discuss these ideas, two of which serve as baselines in

Section 5.3.

1. Scenario reduction. A common approach in scenario reduction is to represent each

scenario using the realized second-stage parameters. However, in Problem (12), this repre-

sentation corresponds to the right-hand side of the flow-balance constraints (14b), whose

dimensionality equals the number of nodes in the road network and whose entries are

mostly zeros. Such a feature representation is high-dimensional and uninformative, making

ML-augmented models intractable and rendering the sampling method ineffective (recall

discussions in Sections 4.1.2 and 4.3.1).

2. TSP features. In Problem (12), our ML prediction target is a function of the optimal

value of a shortest path Problem (14). This problem can be viewed as a special case

of the traveling salesman problem (TSP), where the number of stops is set to two. We

thus can adapt the travel time predictors proposed by Liu et al. (2021), which are well

grounded in the continuous approximation literature for predicting TSP objective values.

These predictors include the locations of the origin and destination, as well as geometric

22

features describing their relative positions (e.g., the distance between them), as detailed

in EC.5.3.2. The TSP features are included as a baseline.

3. Graph-theoretical (GT) features. An alternative approach to leveraging the graph

structure established in Step I of our method is to represent each follower using node

importance metrics from graph theory. To demonstrate the effectiveness of our DeepWalk

algorithm, we include a set of these metrics as baseline features in our computational

studies. These features, including node centrality, betweenness, and their variants, are

detailed in EC.5.3.3.

5.3. Experiment 1: Predicting OD-Pair Accessibility Using ML Models

In this section, we conduct experiments to validate (i) the effectiveness of our follower

sampling method in improving prediction accuracy and (ii) the predictive power of our

learned features.

Experiment setup. We consider four accessibility measures as prediction targets: three

location-based measures using exponential (EXP), linear (LIN), and rectangular (REC)

impedance functions, and one utility-based (UT) measure from Liu et al. (2022a). For each

measure, we randomly generate 3,000 network designs and calculate the accessibility of

each follower under every design. The accessibility associated with each network design

constitutes a dataset, which we split into training and testing sets to train ML models and

evaluate their prediction performance. The evaluation includes three ML models compat-

ible with our ML-augmented framework: kNN, lasso regression, and ridge regression. We

use the mean absolute error (MAE), normalized by the average total accessibility across the

3,000 network designs, as the evaluation metric. We vary the training sample size between

1%–5% of all OD pairs because implementation of both the reduced and ML-augmented

models on large real-world case studies (Section 6) are only possible when the sample size

is very small (< 0.2% in our case study).

Baselines. For sampling, we evaluate our balanced p-median sampling method (BMED)

and compare it against four commonly used baselines from the scenario reduction litera-

ture: uniform sampling (UNI), p-center sampling (CEN), Euclidean Wasserstein scenario

reduction (EW), and the method proposed by Dupačová et al. (2003) (DPCV). Since the

BMED, CEN, and EW problems are NP-hard, we adapt heuristics from Boutilier and

23

Chan (2020), Gonzalez (1985), and Bertsimas and Mundru (2023) to solve them, respec-

tively. These methods involve randomness, so we repeat each approach 10 times with

different random seeds and report the mean and 95% confidence intervals of the normal-

ized MAE. For features, we benchmark our representation learning-based features (REP)

against the TSP and GT features introduced in Section 5.2.2.

Figure 1 Normalized MAE (± 95% confidence interval) over 3,000 network designs. Each panel corresponds to

an “accessibility measure” - “ML model” pair. Each line indicates a “sampling method” - “feature”

combination. For readability, we only present the best-performing sampling method for TSP and GT

features. Some lines are partially visible as they are significantly inferior to others.

Effectiveness of the follower selection algorithm. As illustrated in Figure 1, our

sampling method, BMED, consistently achieves the lowest prediction error when using

REP features, regardless of the accessibility measures, ML models, or sample sizes. The

performance advantage is particularly pronounced with extremely small sample sizes (e.g.,

1%), where BMED outperforms baseline strategies by over 20%, highlighting the effective-

ness of our bounds in guiding sample selection. Furthermore, BMED generally exhibits

lower variation in prediction error compared to the baselines. Similar trends are observed

for TSP and GT features.

24

Predictive power of the learned features. ML models generally perform better with

our REP features compared to baselines. As shown in Figure 1, the REP features sig-

nificantly outperform the best baseline (TSP) when using kNN, with improvements of

44.0%, 50.7%, 21.1%, and 73.0% for the four accessibility measures, respectively, at a 1%

sample size. With lasso and ridge regression, REP features also outperform TSP features,

underscoring the robustness of our representation learning approach. We note that the per-

formance gap between BMED-REP and BMED-TSP decreases as the sample size increases.

This observation aligns with empirical evidence from the representation learning literature,

where the benefit of “high-quality” features is usually more pronounced when the sample

size is small (Perozzi et al. 2014, Cole et al. 2022). Finally, the prediction error achieved

by the REP features is typically 75% lower than that of GT features, demonstrating the

effectiveness of our DeepWalk algorithm in leveraging the follower relationship graph.

5.4. Experiment 2: Generating Leader Decisions using ML-augmented Models

Next, we evaluate the ability of our ML-augmented model, enhanced by our follower sam-

pling and representation learning algorithms, to generate high-quality leader solutions.

Experiment setup.We create 12 problem instances on a synthetic network, correspond-

ing to combinations of three design budgets and four accessibility measures. To compute

the optimality gap of the derived leader solutions, we adapt the Benders approach from

Magnanti et al. (1986) to solve the synthetic instances to optimality (details in EC.4).

Each model is applied 10 times with samples generated using different random seeds, and

we report the average optimality gap.

Baselines. We implement our ML-augmented model with kNN and linear regression

and benchmark them against the reduced model (5) using UNI, BMED, CEN, EW, and

DPCV samples.

Effectiveness of the ML-augmented models. As shown in Figure 2, ML-augmented

models (kNN-BMED and REG-BMED) generally outperform the reduced models by a

large margin, especially when the sample size is extremely small (e.g., 1%). Additionally,

the confidence intervals of the ML-augmented models are consistently narrower than those

of the reduced models, indicating higher stability. The ML component effectively captures

the impact of leader decisions on unsampled followers, resulting in solutions of higher

quality and robustness.

25

Figure 2 Mean optimality gap (± 95% confidence interval) of leader solutions. Problem instances are named as

“accessibility measure”-“budget” and the solution methods are named as “model”-“sampling method”.

Optimality gap = |F (x∗)−F (x′)|/F (x∗) where x∗ and x′ are leader decisions from Benders decomposi-

tion and a sampling-based method, respectively. Some lines are partially visible as they are significantly

inferior to other others.

Efficiency of the ML-augmented models. Figure 3 presents the solution time of the

three models with BMED samples. In general, the solution time of all models increases

as the sample size increases. The kNN-augmented model and the reduced model require

similar solution time as the former is a re-weighted version of the latter and does not have

any additional decision variables or constraints. The linear regression-augmented model

requires longer solution time as it has more decision variables. Compared to applying

Benders decomposition to the original model which generally takes over 10 hours for each

instance, the ML-augmented models generate leader decisions of similar quality in 0.5–5%

of the solution time, highlighting the efficiency of our method.

6. Case Study: Cycling Infrastructure Planning in the City of Toronto

In this section, we present a case study applying our method to Toronto, Canada. We

started a collaboration with the City’s Transportation Services Team in September 2020,

26

Figure 3 Mean solution time (± 95% confidence interval). Problem instances are named as “accessibility

measure”-“budget” and the solution methods are named as “model”-“sampling method”.

focusing on developing quantitative tools to support cycling infrastructure planning in

Toronto. As an evaluation metric, low-stress cycling accessibility has been used by the City

of Toronto to support project prioritization (City of Toronto 2021a). Our optimization

model, which maximizes low-stress cycling accessibility, was used to support Toronto’s

2025–2030 cycling infrastructure planning (City of Toronto 2024a). We introduce Toronto’s

cycling network in Section 6.1 and use our methodology to examine actual and future

decisions regarding network expansion in Section 6.2.

6.1. Cycling Network in Toronto

We construct Toronto’s cycling network based on the centerline network retrieved from

the Toronto Open Data Portal (City of Toronto 2020). We pre-process the network by

removing roads where cycling is legally prohibited, deleting redundant nodes and edges, and

grouping arterial roads into candidate cycling infrastructure projects (detailed in EC.6.1).

The final cycling network has 10,448 nodes, 35,686 edges, and 1,296 candidate projects

totaling 1,913 km. We use the methods summarized in Lin et al. (2021) to calculate the

LTS of each link in the cycling network. LTS1 and LTS2 links are classified as low-stress,

while LTS3 and LTS4 links are high-stress since LTS2 corresponds to the cycling stress

27

tolerance for the majority of the adult population (Furth et al. 2016). Although most local

roads are low-stress, high-stress arterials create many disconnected low-stress “islands”,

limiting low-stress cycling accessibility in many parts of Toronto (see Figure 4).

Figure 4 Level of traffic stress of Toronto’s road network (July 2021).

We use the following procedure to calculate the low-stress cycling accessibility of Toronto,

which serves as an evaluation metric of Toronto’s cycling network and the objective of

our cycling network design Problem (12). The city is divided into 3,702 geographical units

called dissemination areas (DAs). We define each DA centroid as an origin with every other

DA centroid that is reachable within 30 minutes on the overall network being a potential

destination, totaling 1,154,663 OD pairs (S). These OD pairs are weighted by the job

counts at the destination (qod), retrieved from the 2016 Canadian census (Statistics Canada

2016). We use a rectangular impedance function with a cut-off time of 30 minutes (g).

We assume a constant cycling speed of 15 km/h for travel time calculation. The resulting

accessibility measure can be interpreted as the total number of jobs that one can access

within 30 minutes via low-stress routes in the City of Toronto. This metric has been shown

to be highly correlated with cycling mode choice in Toronto (Imani et al. 2019).

6.2. Expanding Toronto’s Cycling Network

As a part of our collaboration, in January 2021 we were asked to evaluate the accessi-

bility impact of three project alternatives for building bike lanes (see Figure 5) to meet

the direction of Toronto’s City Council, intended to provide a cycling connection between

28

midtown and the downtown core (City of Toronto 2021b). These projects were proposed

in 2019 but their evaluation and implementation were accelerated because of increased

cycling demand during COVID. We determined that alternative 2 had the largest acces-

sibility impact. It was ultimately implemented due to its accessibility impact and other

performance indicators (City of Toronto 2021b).

Figure 5 Project alternatives and the existing cycling infrastructure in the City of Toronto (January 2021).

This decision-making process exemplifies the current practice of cycling infrastructure

planning in Toronto: i) manually compile a list of candidate projects, ii) rank the can-

didate projects based on certain metrics, and iii) design project delivery plans. From a

computational perspective, steps i) and ii) serve as a heuristic for solving MaxANDP. This

heuristic approach was necessary for several reasons, including political buy-in for the three

alternatives, and the computational intractability of solving MaxANDP at the city scale.

In fact, Benders decomposition, which was used to solve the synthetic instances in Section

5, cannot find a feasible solution to these instances before running out of memory. Now,

we can use our ML-augmented model to search for project combinations at the city scale

without pre-specifying project candidates.

To this end, we first apply the ML-augmented model with a budget of 6 km (similar

to alternative 2). The optimal projects (see Figure 5) improve Toronto’s total low-stress

cycling accessibility by 9.46% over alternative 2. Instead of constructing only one corridor as

in alternative 2, the ML-augmented model selects six disconnected road segments. Some of

them serve as connections between existing cycling infrastructure, others bridge currently

29

disconnected low-stress sub-networks consisting of low-stress local roads. We also compare

our approach against i) three reduced models and ii) a greedy heuristic that iteratively

selects the candidate project that leads to the maximum increase in total accessibility until

the budget is depleted. As presented in Table 1, the greedy heuristic, which is commonly

adopted in practice and in the existing literature, closely matches the performance of

the human-proposed solution (i.e., alternative 2 identified through the process described

above). With similar computational times, the three reduced models are all inferior to our

model, with the best reduced model being on par with the human performance and others

lagging over 20% behind. Interestingly, the greedy heuristic performs quite well against the

reduced model. We believe this highlights the difficulty of achieving strong performance

with a small sample in a purely sampling based model.

Table 1 Increases in the average low-stress cycling accessibility over 3,702 DAs in Toronto due to 6 km of new

cycling infrastructure selected by different approaches. We implement each sampling-based method with five

random samples and report the best result across the five samples.

Method (Sample) Accessibility Increase % change relative to human

Human 6,902 + 0.00%
Greedy 7,012 + 1.59%
Reduced (UNI) 4,965 − 28.06%
Reduced (PCEN) 5,730 − 20.45%
Reduced (BMED) 7,118 + 3.13%
ML-augmented (BMED) 7,555 +9.46%

Next, to demonstrate the potential impact of our method in Toronto, we compare our

model versus the greedy heuristic, which mimics the current cycling infrastructure planning

practice. We increase the road design budget from 10 to 100 km in increments of 10 km.

The 100 km budget aligns with Toronto’s cycling network expansion plan for 2022–2024

(City of Toronto 2021a). The greedy heuristic took over 3 days to expand the network by

100 km as each iteration involves solving millions of shortest path problems. Our approach

took around 4 hours to find a leader decision using a sample of 2,000 OD pairs (1.7% of

all OD pairs). Given this speedup, we can solve our model multiple times with different

samples and report the best solution as measured by the total accessibility of all OD pairs.

The computational setups of the greedy heuristic and our approach are detailed in EC.6.3.

As shown in Figure 6, when holding both methods to the same computational time

(meaning that we solve our ML-augmented model with 21 different sets of OD pair samples

30

and taking the best solution), our approach increases accessibility by 19.2% on average

across different budgets. For example, with a budget of 70 km, we can improve the total

accessibility by a similar margin as achieved by the greedy heuristic using a 100 km budget,

corresponding to a savings of 18 million Canadian dollars estimated based on the City’s

proposed budget (City of Toronto 2021a). If instead we used the full 100 km budget, we

would achieve 11.3% greater accessibility. Finally, we note that solution quality was similar

between 14 and 21 samples, meaning that with we can achieve the above gains while

simultaneously reducing solution time by approximately 33%.

Figure 6 The performance profiles of the greedy and optimal expansions. Note that using 21 different sets of

OD pairs samples results in the same solution time as the greedy expansion. Hence, 7 and 14 samples

correspond to 1/3 and 2/3 of the solution time of greedy.

6.3. Managerial Insights

We conclude the case study by providing managerial insights derived by examining the

network design solutions generated by our approach and the current practice (visualized

in EC.6.4), and through conversations with practitioners.

First, both methods prioritize cycling infrastructure projects in the downtown area,

where a well-connected low-stress cycling network already exists (Figure 4) and where job

opportunities are densely distributed. These projects connect many DAs to the existing

low-stress network, granting them access to a large number of job opportunities nearby.

This empirical finding underscores the importance of forming a well-connected cycling

network and aligns with the City of Toronto’s emphasis on enhancing cycling network

connectivity (City of Toronto 2021b, 2024b).

31

Second, the improvements achieved by our approach mainly come from identifying

projects that have little accessibility impact when constructed alone, yet exhibit significant

impact when combined. These improvements often involve eliminating high-stress barriers

between low-stress cycling “islands”, which requires coordinated efforts across multiple

infrastructure projects. This observation highlights the potential for improving the City’s

infrastructure investment outcomes through city-scale joint planning. While such coordi-

nation was previously impossible due to the computational challenges discussed earlier,

our machine learning-augmented optimization method provides a scalable approach to

identifying such solutions going forward.

Finally, although maximizing low-stress cycling accessibility is not the only goal of

cycling network design, we believe our approach can be useful in at least three contexts:

i) in the long term, our model can be used to generate a base plan that can later be

fine-tuned by transportation planners; ii) in the near term, our approach can efficiently

search for project combinations from a large pool that would be very difficult to analyze

manually; iii) Given a fixed budget, our model provides a strong benchmark against which

to validate the goodness of human-proposed solutions. Due to its strong performance, our

optimization model was used to inform Toronto’s 2025–2030 cycling infrastructure plan

(City of Toronto 2024b,a).

7. Conclusion

In this paper, we present a novel ML-based approach to solving bilevel (stochastic) pro-

grams with a large number of independent followers (scenarios). We build on two existing

strategies—sampling and approximation—to tackle the computational challenges imposed

by a large follower set. The model considers a sampled subset of followers while integrating

an ML model to estimate the impact of leader decisions on unsampled followers. Unlike

existing approaches for integrating optimization and ML models, we embed the ML model

training into the optimization model, which allows us to employ general follower features

that may not be compactly represented by leader decisions. Under certain assumptions, the

generated leader decisions enjoy solution quality guarantees as measured by the original

objective function considering the full follower set. We also introduce practical strate-

gies, including follower sampling algorithms and a representation learning framework, to

enhance the model performance. Using both synthetic and real-world instances of a cycling

32

network design problem, we demonstrate the strong computational performance of our

approach in generating high-quality leader decisions. The performance gap between our

approach and baseline approaches are particularly large when the sample size is small.

Acknowledgments

The authors are grateful to Sheng Liu, Merve Bodur, Elias Khalil, Rafid Mahmood, and Erick Delage for

helpful comments and discussions. This research is supported by funding from the City of Toronto and

NSERC Alliance Grant 561212-20. Resources used in preparing this research were provided, in part, by

the Province of Ontario, the Government of Canada through CIFAR, and companies sponsoring the Vector

Institute.

References

Ban GY, Rudin C (2019) The big data newsvendor: Practical insights from machine learning. Operations

Research 67(1):90–108.

Bard JF (2013) Practical Bilevel Optimization: Algorithms and Applications, volume 30 (Springer Science &

Business Media).

Bengio Y, Frejinger E, Lodi A, Patel R, Sankaranarayanan S (2020) A learning-based algorithm to quickly

compute good primal solutions for stochastic integer programs. International conference on Integration

of Constraint Programming, Artificial Intelligence, and Operations Research, 99–111 (Springer).

Bertsimas D, Kallus N (2020) From predictive to prescriptive analytics. Management Science 66(3):1025–

1044.

Bertsimas D, Mundru N (2023) Optimization-based scenario reduction for data-driven two-stage stochastic

optimization. Operations Research 71(4):1343–1361.

Bickel PJ, Breiman L (1983) Sums of functions of nearest neighbor distances, moment bounds, limit theorems

and a goodness of fit test. The Annals of Probability 185–214.

Birge JR, Louveaux F (2011) Introduction to Stochastic Programming (Springer Science & Business Media).

Bodur M, Luedtke JR (2017) Mixed-integer rounding enhanced benders decomposition for multiclass service-

system staffing and scheduling with arrival rate uncertainty. Management Science 63(7):2073–2091.

Boutilier JJ, Chan TCY (2020) Ambulance emergency response optimization in developing countries. Oper-

ations Research 68(5):1315–1334.

Brandes U, Fleischer D (2005) Centrality measures based on current flow. Annual Symposium on Theoretical

Aspects of Computer Science, 533–544 (Springer).

Buehler R, Dill J (2016) Bikeway networks: A review of effects on cycling. Transport Reviews 36(1):9–27.

Carlsson JG, Jones B (2022) Continuous approximation formulas for location problems. Networks 80(4):407–

430.

33

Carrión M, Arroyo JM, Conejo AJ (2009) A bilevel stochastic programming approach for retailer futures

market trading. IEEE Transactions on Power Systems 24(3):1446–1456.

Carvalho M, Dragotto G, Feijoo F, Lodi A, Sankaranarayanan S (2024) When nash meets stackelberg.

Management Science 70(10):7308–7324.

Chen X, Sim M, Sun P, Zhang J (2008) A linear decision-based approximation approach to stochastic

programming. Operations Research 56(2):344–357.

City of Toronto (2020) City of Toronto open data. https://www.toronto.ca/city-government/

data-research-maps/open-data/, accessed: 2020-09-15.

City of Toronto (2021a) 2021 cycling network plan update. Accessed via https://www.toronto.ca/

legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf on July 8, 2022.

City of Toronto (2021b) ActiveTO: Lessons learned from 2020 and next steps for 2021. Accessed via https:

//shorturl.at/IzIS3 on July 21, 2022.

City of Toronto (2024a) Cycling impact analysis. https://www.toronto.ca/legdocs/mmis/2024/ie/bgrd/

backgroundfile-245676.pdf, accessed: 2024-09-04.

City of Toronto (2024b) Cycling network plan update (2025-2027). https://www.toronto.ca/legdocs/

mmis/2024/ie/bgrd/backgroundfile-245671.pdf, accessed: 2024-09-04.

Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local

fitting. Journal of the American Statistical Association 83(403):596–610.

Cole E, Yang X, Wilber K, Mac Aodha O, Belongie S (2022) When does contrastive visual representation

learning work? Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

14755–14764.

Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Annals of Operations Research

153:235–256.

Crainic TG, Hewitt M, Rei W (2014) Scenario grouping in a progressive hedging-based meta-heuristic for

stochastic network design. Computers & Operations Research 43:90–99.

Dill J, McNeil N (2016) Revisiting the four types of cyclists: Findings from a national survey. Transportation

Research Record 2587(1):90–99.

Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Mathemat-

ical Programming 95(3):493–511.

Elmachtoub AN, Grigas P (2022) Smart “predict, then optimize”. Management Science 68(1):9–26.

Furth PG, Mekuria MC, Nixon H (2016) Network connectivity for low-stress bicycling. Transportation

Research Record 2587(1):41–49.

Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theoretical Computer Sci-

ence 38:293–306.

https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf
https://www.toronto.ca/legdocs/mmis/2021/ie/bgrd/backgroundfile-173663.pdf
https://shorturl.at/IzIS3
https://shorturl.at/IzIS3
https://www.toronto.ca/legdocs/mmis/2024/ie/bgrd/backgroundfile-245676.pdf
https://www.toronto.ca/legdocs/mmis/2024/ie/bgrd/backgroundfile-245676.pdf
https://www.toronto.ca/legdocs/mmis/2024/ie/bgrd/backgroundfile-245671.pdf
https://www.toronto.ca/legdocs/mmis/2024/ie/bgrd/backgroundfile-245671.pdf

34

Hochbaum DS, Shmoys DB (1985) A best possible heuristic for the k-center problem. Mathematics of Oper-

ations Research 10(2):180–184.

Hoeffding W (1994) Probability inequalities for sums of bounded random variables. The Collected Works of

Wassily Hoeffding, 409–426 (Springer).

Imani AF, Miller EJ, Saxe S (2019) Cycle accessibility and level of traffic stress: A case study of Toronto.

Journal of Transport Geography 80:102496.

Keutchayan J, Ortmann J, Rei W (2023) Problem-driven scenario clustering in stochastic optimization.

Computational Management Science 20(1):13.

Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over

graphs. Advances in Neural Information Processing Systems, 6348–6358.

Khalil E, Le Bodic P, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer program-

ming. Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

Kouw WM, Loog M (2019) A review of domain adaptation without target labels. IEEE Transactions on

Pattern Analysis and Machine Intelligence 43(3):766–785.

Kraus S, Koch N (2021) Provisional COVID-19 infrastructure induces large, rapid increases in cycling.

Proceedings of the National Academy of Sciences 118(15).

Leal M, Ponce D, Puerto J (2020) Portfolio problems with two levels decision-makers: Optimal portfo-

lio selection with pricing decisions on transaction costs. European Journal of Operational Research

284(2):712–727.

Li X, Sun H, Teo CP (2022) Convex optimization for bundle size pricing problem. Management Science

68(2):1095–1106.

Lim J, Dalmeijer K, Guhathakurta S, Van Hentenryck P (2021) The bicycle network improvement problem:

Optimization algorithms and a case study in Atlanta. Journal of Transportation Engineering, Part A:

Systems 148(11).

Lin B, Chan TCY, Saxe S (2021) The impact of COVID-19 cycling infrastructure on low-stress cycling

accessibility: A case study in the City of Toronto. Findings 19069.

Liu H, Szeto W, Long J (2019) Bike network design problem with a path-size logit-based equilibrium con-

straint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics

and Transportation Review 127:284–307.

Liu S, He L, Shen ZJM (2021) On-time last-mile delivery: Order assignment with travel-time predictors.

Management Science 67(7):4095–4119.

Liu S, Shen ZJM, Ji X (2022a) Urban bike lane planning with bike trajectories: Models, algorithms, and a

real-world case study. Manufacturing & Service Operations Management 24(5):2500–2515.

35

Liu S, Siddiq A, Zhang J (2022b) Planning bike lanes with data: Ridership, congestion, and path selection,

available at SSRN: https://ssrn.com/abstract=4055703.

Magnanti TL, Mireault P, Wong RT (1986) Tailoring benders decomposition for uncapacitated network

design. Netflow at Pisa, 112–154 (Springer).

Mauttone A, Mercadante G, Rabaza M, Toledo F (2017) Bicycle network design: model and solution algo-

rithm. Transportation Research Procedia 27:969–976.

McGivney K, Yukich J (1999) Asymptotics for geometric location problems over random samples. Advances

in Applied Probability 31(3):632–642.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and

phrases and their compositionality. Advances in Neural Information Processing Systems, volume 26.

Mǐsić VV (2020) Optimization of tree ensembles. Operations Research 68(5):1605–1624.

Morabit M, Desaulniers G, Lodi A (2021) Machine-learning–based column selection for column generation.

Transportation Science 55(4):815–831.

Olmos LE, Tadeo MS, Vlachogiannis D, Alhasoun F, Alegre XE, Ochoa C, Targa F, González MC (2020)

A data science framework for planning the growth of bicycle infrastructures. Transportation Research

Part C: Emerging Technologies 115:102640.

Parzen E (1962) On estimation of a probability density function and mode. The Annals of Mathematical

Statistics 33(3):1065–1076.

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. Proceedings of

the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701–710.

Radford A, Narasimhan K, Salimans T, Sutskever I, et al. (2018) Improving language understanding by

generative pre-training. Preprint: https: // openai. com/ research/ language-unsupervised .

Römisch W, Schultz R (1991) Stability analysis for stochastic programs. Annals of Operations Research

30(1):241–266.

Statistics Canada (2016) Population and dwelling count, 2016 census. https://shorturl.at/4GcZS,

accessed: 2020-11-15.

Stone CJ (1977) Consistent nonparametric regression. The Annals of Statistics 595–620.

White DJ, Anandalingam G (1993) A penalty function approach for solving bi-level linear programs. Journal

of Global Optimization 3(4):397–419.

Wu Y, Song W, Cao Z, Zhang J (2022) Learning scenario representation for solving two-stage stochastic

integer programs. International Conference on Learning Representations.

Zhang W, Wang K, Jacquillat A, Wang S (2023) Optimized scenario reduction: Solving large-scale stochastic

programs with quality guarantees. INFORMS Journal on Computing 35(4):886–908.

Zugno M, Morales JM, Pinson P, Madsen H (2013) A bilevel model for electricity retailers’ participation in

a demand response market environment. Energy Economics 36:182–197.

https://ssrn.com/abstract=4055703
https://openai.com/research/language-unsupervised
https://shorturl.at/4GcZS

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec1

Electronic Companion

EC.1. Proofs of Solution Quality Bounds

EC.1.1. Proof of Theorem 1

Proof. We start by defining notations. For any leader decision x∈X , let

F̂ kNN
T (x) := f(x)+

∑
t∈T

qtGt(x)+
∑

s∈S\T

∑
t∈Tk(fs)

qs

k
Gt(x)

denote the objective function of the kNN-augmented model (9). Recall that F (x) is the

objective function of the original bilevel model (2) that considers the full follower set S.
For any x ∈ X and s ∈ S, let ηs(x) := E [Gs(x) | f s] be the expected cost of follower s. Let

Q̄ :=maxs∈S q
s denote the maximal follower weight.

We first decompose the approximation error of F̂ kNN
T (x) to F (x). For any x∈X ,

F (x)− F̂ kNN
T (x)

=
∑

s∈S\T

qs

Gs(x)−
∑

t∈Tk(fs)

1

k
Gt(x)

=
∑

s∈S\T

qs

Gs(x)+ ηs(x)− ηs(x)−
∑

t∈Tk(fs)

1

k
Gt(x)+

∑
t∈Tk(fs)

1

k
ηt(x)−

∑
t∈Tk(fs)

1

k
ηt(x)

=
∑
s∈S

∑
t∈Tk(fs)

qs

k

[
ηs(x)− ηt(x)

]
+
∑

s∈S\T

qs [Gs(x)− ηs(x)] +
∑
t∈T

∑
s∈Sk(t)

qs

k

[
ηt(x)−Gt(x)

]
,

where Sk(t)⊆S represents the set of followers in S\T whose k-nearest neighbors in set T
include follower t.

Next, we relate the approximation error to decision quality. We have

F (xkNN
T)−F (x∗) =F (xkNN

T)− F̂ kNN
T (xkNN

T)+ F̂ kNN
T (xkNN

T)−F (x∗)+ F̂ kNN
T (x∗)− F̂ kNN

T (x∗)

≤
[
F (xkNN

T)− F̂ kNN
T (xkNN

T)
]
+
[
F̂ kNN
T (x∗)−F (x∗)

]
Based on the approximation error decomposition above, we have

F (xkNN
T)−F (x∗)

≤
∑
s∈S

∑
t∈Tk(fs)

qs

k

[
ηs(xkNN

T)− ηt(xkNN
T)

]
︸ ︷︷ ︸

(1)

+
∑

s∈S\T

qs
[
Gs(xkNN

T)− ηs(xkNN
T)

]
︸ ︷︷ ︸

(2)

ec2 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

+
∑
t∈T

∑
s∈Sk(t)

qs

k

[
ηt(xkNN

T)−Gt(xkNN
T)

]
︸ ︷︷ ︸

(3)

+
∑
s∈S

∑
t∈Tk(fs)

qs

k

[
ηt(x∗)− ηs(x∗)

]
︸ ︷︷ ︸

(4)

+
∑

s∈S\T

qs [ηs(x∗)−Gs(x∗)]

︸ ︷︷ ︸
(5)

+
∑
t∈T

∑
s∈Sk(t)

qs

k

[
Gt(x∗)− ηt(x∗)

]
︸ ︷︷ ︸

(6)

According to Assumption 2, we have

(1)+ (4)≤
∑
s∈S

∑
t∈Tk(fs)

Q̄

k

∣∣ηs(xkNN
T)− ηt(xkNN

T)
∣∣+∑

s∈S

∑
t∈Tk(fs)

Q̄

k

∣∣ηs(x∗)− ηt(x∗)
∣∣

≤
∑
s∈S

∑
t∈Tk(fs)

2µQ̄

k
d(f s, f t).

Regarding (2), (3), (5), and (6), for any s∈ S\T , we can treat qs
[
Gs(xkNN

T)− ηs(xkNN
T)

]
and qs [Gs(x∗)− ηs(x∗)] as random variables with mean zero and are bounded in an interval

of width 2Q̄Ḡ. Similarly, for any t ∈ T , we can treat
∑

s∈Sk(t)
qs [Gt(x)− ηt(x)]/k and∑

s∈Sk(t)
qs [ηt(x)−Gt(x)]/k as random variables with mean zero and that are bounded in

an interval of width 2Q̄Ḡmt
k,S\T /k. Based on Assumption 1 and the Hoeffding inequality

(Hoeffding 1994), we have, with probability at least 1− γ,

(2)+ (3)+ (5)+ (6)≤

√√√√√4Q̄2Ḡ2 log

(
1

γ

)|S\T |+∑
t∈T

(
mt

k,S\T

k

)2
,

where mt
k,S\T is the number of followers in S\T whose k-nearest neighbors in T include

follower t∈ T .
Combining the bounds on (1) + (4) and (2) + (3) + (5) + (6), we have, with probability

at least 1− γ,

F (xkNN
T)−F (x∗)≤

∑
s∈S

∑
t∈Tk(fs)

2µQ̄

k
d(f s, f t)+

√√√√√4Q̄2Ḡ2 log

(
1

γ

)|S\T |+∑
t∈T

(
mt

k,S\T

k

)2
.

□

EC.1.2. Proof of Theorem 2

We start by defining notations. Given a parametric regression model P (·;θ), for any leader

decision x∈X , let

F̂PR
T (x) :=min

θ∈Θ
f(x)+

∑
t∈T

qtGt(x)+
∑

s∈S\T

P (f s;θ)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec3

s.t.
∑
t∈T

mt
1,S\T

∣∣Gt(x)−P (f t;θ)
∣∣≤ L̄

denote the objective function of the parametric regression-augmented model (10). Recall

that F (x) is the objective function of the original bilevel model (2) that considers the full

follower set S. For any x ∈ X and s ∈ S, let ηs(x) := E [Gs(x) | f s] be the expected cost of

follower s. Let Q̄ :=maxs∈S q
s denote the maximal follower weight. We denote by θPR

T and

θ∗
T the optimal solutions to the optimization models solved for evaluating F̂PR

T (xPR) and

F̂PR
T (x∗), respectively. Let ν(f s) be the nearest neighbor of f s in T for any s∈ S\T .
We first decompose the approximation error of F̂PR

T (x) to F (x). For any x∈X , we have

F (x)− F̂PR
T (x)

=
∑

s∈S\T

qs [Gs(x)−P (f s;θ)]

=
∑

s∈S\T

qs [Gs(x)− ηs(x)] +
∑

s∈S\T

qs
[
ηs(x)− ην(f

s)(x)
]
+
∑

s∈S\T

qs
[
ην(f

s)(x)−Gν(fs)(x)
]

+
∑

s∈S\T

qs
[
Gν(fs)(x)−P (fν(f

s);θ)
]
+
∑

s∈S\T

qs
[
P (fν(f

s);θ)−P (f s;θ)
]

=
∑

s∈S\T

qs [Gs(x)− ηs(x)] +
∑

s∈S\T

qs
[
ηs(x)− ην(f

s)(x)
]
+
∑
t∈T

∑
s∈S1(t)

qs
[
ηt(x)−Gt(x)

]
+
∑
t∈T

∑
s∈S1(t)

qs
[
Gt(x)−P (f t;θ)

]
+
∑

s∈S\T

qs
[
P (fν(f

s);θ)−P (f s;θ)
]

where Sk(t)⊆S represents the set of followers in S\T whose k-nearest neighbors in set T
include follower t.

Next, we relate the approximation error to decision quality. We have

F (xPR
T)−F (x∗)

=F (xPR
T)− F̂PR

T (xPR
T)+ F̂PR

T (xPR
T)−F (x∗)+ F̂PR

T (x∗)− F̂PR
T (x∗)

≤
[
F (xPR

T)− F̂PR
T (xPR

T)
]
+
[
F̂PR
T (x∗)−F (x∗)

]
The inequality holds because xPR

T is the optimal solution to model (10).

Based on the approximation error decomposition above, we have

F (xPR
T)−F (x∗)

≤
∑

s∈S\T

qs
[
Gs(xPR

T)− ηs(xPR
T)
]

︸ ︷︷ ︸
(1)

+
∑

s∈S\T

qs
[
ηs(xPR

T)− ην(f
s)(xPR

T)
]

︸ ︷︷ ︸
(2)

+
∑
t∈T

∑
s∈S1(t)

qs
[
ηt(xPR

T)−Gt(xPR
T)
]

︸ ︷︷ ︸
(3)

ec4 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

+
∑
t∈T

∑
s∈S1(t)

qs
[
Gt(xPR

T)−P (f t;θPR
T)
]

︸ ︷︷ ︸
(4)

+
∑

s∈S\T

qs
[
P (fν(f

s);θPR
T)−P (f s;θPR

T)
]

︸ ︷︷ ︸
(5)

+
∑

s∈S\T

qs [Gs(x∗)− ηs(x∗)]

︸ ︷︷ ︸
(6)

+
∑

s∈S\T

qs
[
ηs(x∗)− ην(f

s)(x∗)
]

︸ ︷︷ ︸
(7)

+
∑
t∈T

∑
s∈S1(t)

qs
[
ηt(x∗)−Gt(x∗)

]
︸ ︷︷ ︸

(8)

+
∑
t∈T

∑
s∈S1(t)

qs
[
Gt(x∗)−P (f t;θ∗

T)
]

︸ ︷︷ ︸
(9)

+
∑

s∈S\T

qs
[
P (fν(f

s);θ∗
T)−P (f s;θ∗

T)
]

︸ ︷︷ ︸
(10)

According to Assumption 2, we have

(2)+ (7)≤
∑
s∈S

Q̄
∣∣ηs(xPR

T)− ην(f
s)(xPR

T)
∣∣+∑

s∈S

Q̄
∣∣ηs(x∗)− ην(f

s)(x∗)
∣∣≤∑

s∈S

2µQ̄d(f s, f t).

According to Assumption 3, we have

(5)+ (10)≤
∑

s∈S\T

Q̄
∣∣P (fν(f

s);θ∗
T)−P (f s;θ∗

T)
∣∣+ ∑

s∈S\T

Q̄
∣∣P (fν(f

s);θ∗
T)−P (f s;θ∗

T)
∣∣

≤
∑

s∈S\T

2λQ̄d(f s, f t).

Since both (x∗,θ∗
T) and (xPR

T ,θPR
T) are both feasible solutions to model (10), we have

(4)+ (9)≤
∑
t∈T

Q̄mt
1,S\T

∣∣Gt(xPR
T)−P (f t;θPR

T)
∣∣+∑

t∈T

Q̄mt
1,S\T

∣∣Gt(x∗)−P (f t;θ∗
T)
∣∣

≤2Q̄L̄1(T ⊂ S)

The last inequality holds because we need the training loss constraint only when T ⊂ S.

Regarding (1), (3), (6), and (8), for any s ∈ S\T , we can treat qs
[
Gs(xPR

T)− ηs(xPR
T)
]

and qs [Gs(x∗)− ηs(x∗)] as random variables with mean zero and are bounded in an inter-

val of width 2Q̄Ḡ. Similarly, for any t ∈ T , we can treat
∑

s∈S1(t)
qs [Gt(x)− ηt(x)] and∑

s∈S1(t)
qs [ηt(x)−Gt(x)] as random variables with mean zero and that are bounded in

an interval of width 2Q̄Ḡmt
1,S\K. Based on Assumption 1 and the Hoeffding inequality

(Hoeffding 1994), we have, with probability at least 1− γ,

(1)+ (3)+ (6)+ (8)≤

√√√√4Q̄2Ḡ2 log

(
1

γ

)(
|S\T |+

∑
t∈T

(
mt

1,S\T

)2)
,

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec5

where mt
k,S\T is the number of followers in S\T whose k-nearest neighbors in T include

follower t∈ T .

Combing the bounds on (2) + (7), (5) + (10), (4) + (9), and (1) + (3) + (6) + (8), we

have with probability at least 1− γ,

F (xPR
T)−F (x∗)

≤2Q̄L̄1(T ⊂ S)+ 2Q̄(λ+µ)
∑

s∈S\T

dF(f
s, fν(s))+

√√√√4Q̄2Ḡ2

[
|S\T |+

∑
t∈T

(mt
1,S\T)

2

]
log(1/γ).

□

EC.2. Proofs of Bound Tightness Results

EC.2.1. Proof of Theorem 3

We first define some notations that will be used in this proof. We rewrite the bound in

Theorem 1 as follows.

E1NN
m (T) = 2µQ̄B1NN(T)+ 2Q̄ḠV 1NN(T),

where

B1NN(T) :=
∑
s∈S

∑
t∈Tk(fs)

d(f s, f t)

and

V 1NN(T) :=

√√√√[|S\T |+∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

indicate the bias and variance terms, respectively. Next, we derive the limits of

B1NN(Tp,d)/m and V 1NN(Tp,d)/m, separately.

Limit of B1NN(Tp,d)/m. Observing that Tp,d is the optimal solution to a balanced p-

median problem, according to Theorem 1.1 in McGivney and Yukich (1999), we have

lim
m→∞

1

m(ξ−1)/ξ
B1NN(Tp,d) =Cd,ξ

∫
[0,1]ξ

σ(ξ−1)/ξ(f)df.

where Cd,ξ > 0 is a constant that depends on d and ξ. As estimated in Theorem 12 from

Carlsson and Jones (2022), Cd,ξ satisfies

Cd,ξ ≤
2

3

√
d.

ec6 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Since d≤ β⌈m/p⌉ and p=max{1, αm(ξ−1)/ξ}, we have

lim
m→∞

1

m
B1NN(Tp,d) = 0.

Limit of V 1NN(Tp,d)/m. It is easy to verify that

0≤ V 1NN(Tp,d)≤ V̄ 1NN(Tp,d),

where

V̄ 1NN(T) =
√

[|S|− |T |+ |T |d2] log(1/γ).

The first inequality is trivial, while the second inequality holds because mt
1,\T = |S(t)| ≤ d

for all t∈ T which come from the constraints in Problem (11). Therefore, according to the

Squeeze Theorem, to show

lim
m→∞

1

m
V 1NN(Tp,d) = 0,

it suffices to show that

lim
m→∞

1

m
V̄ 1NN(Tp,d) = 0.

We have

0≤ 1

m
V̄ 1NN(Tp,d)≤

√[
1

|S|
− α

|S|(ξ+1)/ξ
+

β2

α|S|(ξ−1)/ξ

]
log(1/γ)

According to the Squeeze theorem, we have

lim
m→∞

1

m
V 1NN(Tp,d) = 0

Combining the limits of V 1NN(Tp,d)/m and B1NN(Tp,d)/m, we have

lim
m→∞

1

m
E1NN

m (Tp,d) = 0.

□

EC.2.2. Proof of Theorem 4

We first define some notations that will be used in this proof. We rewrite the bound in

Theorem 2 as follows.

EPR
m (T) = 2Q̄L̄1(T ⊂ S)+ 2Q̄(µ+λ)B1NN(T)+ 2Q̄ḠV 1NN(T),

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec7

where

B1NN(T) :=
∑
s∈S

∑
t∈Tk(fs)

d(f s, f t)

and

V 1NN(T) :=

√√√√[|S\T |+∑
t∈T

(mt
1,S\T)

2

]
log(1/γ)

indicate the bias and variance terms, respectively.

As shown in the proof of Theorem 3, we know that

lim
m→∞

1

m
B1NN(T) = 0,

and

lim
m→∞

1

m
V 1NN(T) = 0.

Since the first term 2Q̄L̄1(T ⊂ S) is a fixed finite constant, we have

lim
m→∞

1

m
EPR

m (T) = 0.

□

EC.3. Formulation of MaxANDP

In this section, we present the full formulation of MaxANDP using a piecewise linear

impedance function g and shortest-path routing problems as introduced in Section 5.1.

Since g is a decreasing function of travel time and the objectives of the followers are

to minimize travel time, the objectives of the leader and followers are aligned. Therefore,

the optimality conditions (12b) can be replaced with the routing constraints (14b)–(14d),

resulting in a single-level formulation:

maximize
x,y,z

∑
(o,d)∈S

qodg(yod) (EC.1a)

subject to c⊺x≤Bedge (EC.1b)

b⊺z≤Bnode (EC.1c)

Ayod = eod, ∀(o, d)∈ S (EC.1d)

yodij ≤ xij, ∀(i, j)∈ Eh, (o, d)∈ S (EC.1e)

yodij ≤ xwl + zi, ∀i∈Nh, (i, j)∈ E−h (i), (w, l)∈ Eh(i), (o, d)∈ S (EC.1f)

ec8 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

0≤ yodij ≤ 1, ∀(i, j)∈ E (o, d)∈ S (EC.1g)

x∈ {0,1}|Eh| (EC.1h)

z∈ {0,1}|Nh|. (EC.1i)

It is known that the parameter matrix of the flow balance constraints (EC.1d) is totally

unimodular. Moreover, for any fixed feasible x and z, each row in the parameter matrix

of constraints (EC.1e)–(EC.1g) has one “1” with all other entries being zero. Therefore,

for any fixed x and z, the parameter matrix of constraints (EC.1d)–(EC.1g) is totally

unimodular. We thus can discard the integrality constraints on yod and treat them as

continuous decision variables bounded in [0,1]. The only thing left is to linearize function

g, which depends on the values of β1 and β2.

Concave impedance function. When β1 ≤ β2, g can be treated as a concave function

of travel time t⊺yod on [0, T2]. We introduce continuous decision variables vod ∈R+, for any

OD pairs (o, d) ∈ S, representing the accessibility of OD pairs (o, d). Problem (EC.1) can

then be written as

maximize
v,x,y,z

∑
(o,d)∈S

qodvod (EC.2a)

subject to (EC.1b)–(EC.1f)

vod ≤ α1− β1t
⊺yod, ∀(o, d)∈ S (EC.2b)

vod ≤ α2− β2t
⊺yod, ∀(o, d)∈ S (EC.2c)

vod ≥ 0, ∀(o, d)∈ S (EC.2d)

(EC.1g)–(EC.1i)

where α1 = 1 and α2 = 1+ (β2 − β1)T1 are the intercepts of the linear functions in [0, T1)

and [T1, T2) respectively.

Convex impedance function. When β1 > β2, g can be treated as a strictly convex

function of travel time t⊺yod on [0, T2]. We introduce binary decision variables rod, for any

OD pairs (o, d) ∈ S, representing if the travel time of pair (o, d) is in [0, T1] (= 1) or not

(= 0). We introduce continuous decision variabel uod
t ∈R+, for any OD pairs (o, d)∈ S and

any of the two travel time intervals t∈ {1,2}. Problem (EC.1) can then be written as

maximize
r,u,x,y,z

∑
(o,d)∈S

2∑
t=1

qod(αt− βtu
od
t) (EC.3a)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec9

subject to (EC.1b)–(EC.1f)

uod
1 ≤ T1r

od, ∀(o, d)∈ S (EC.3b)

T1(1− rod)≤ uod
2 ≤ T (1− rod), ∀(o, d)∈ S (EC.3c)

uod
1 +uod

2 = t⊺yod, ∀(o, d)∈ S (EC.3d)

uod
t ≥ 0, ∀(o, d)∈ S, t∈ {1,2} (EC.3e)

rod ∈ {0,1}, ∀(o, d)∈ S (EC.3f)

(EC.1g)–(EC.1i). (EC.3g)

EC.4. Solution Method for MaxANDP

In this section, we present a Benders decomposition algorithm that takes advantage of the

block structure of Problem (EC.1) (i.e. the routing problems of the OD pairs are indepen-

dent of each other) along with its acceleration strategies. This algorithm is applicable to

both convex and concave impedance functions, and can be easily extended to solving the

ML-augmented model of MaxANDP. For ease of presentation, we treat g as a function for

travel time t⊺yod in this section.

EC.4.1. Benders Decomposition

We start by introducing the Benders reformulation of Problem (EC.1). We introduce con-

tinuous decision variables τ od, for any OD pair (o, d) ∈ S, indicating the travel time from

o to d using the low-stress network. We then re-written Problem (EC.1) as

maximize
x,y,z,τ

∑
(o,d)∈S

qdg(τ od) (EC.4a)

subject to (EC.1b), (EC.1c), (EC.1h), (EC.1i)

τ od ≥min
yod

{
t⊺yod

∣∣ (EC.1d)− (EC.1g)
}
, ∀(o, d)∈ S. (EC.4b)

For each (o, d) ∈ S, We associate unbounded dual variables λod with constraints (EC.1d)

and non-negative dual variables θod, δod, and πod with constraints (EC.1e)–(EC.1g), respec-

tively. Given any network design (x,z), we formulate the dual of the routing problem as

maximize
θ,δ,π≥0, λ

−λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

(EC.5a)

ec10 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

subject to −λod
j +λod

i −1 [(i, j)∈ Eh] θodij −1(i∈Nh)
∑

(w,l)∈Eh(i)

δodijwl− πod
ij ≤ tij, ∀(i, j)∈ E .

(EC.5b)

Since the routing problem associated with each OD pair is always feasible and bounded,

its dual (EC.5) is also feasible and bounded. Let Πod denote the set of extreme points of

problem (EC.5). According to the duality theory, constraints (EC.4b) can be replace by

τ od ≥−λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

∀λod,θod,δod,πod ∈Πod, (o, d)∈ S. (EC.6)

This set of constraints is of exponential size, but can be solved with a cutting-plane

method that iterates between problems (EC.4) and (EC.5). More specifically, we initial-

ize Problem (EC.4) without any of the constraints (EC.6). We solve Problem (EC.4) to

obtain feasible x and z and trial values of τ od. For each (o, d) ∈ S, we then solve a Prob-

lem (EC.5) with the x and s and check if the trail value of τ od and the optimal solution of

Problem (EC.5) satisfy constraint (EC.6) or not. If not, the violated cut is added to Prob-

lem (EC.4). This process repeats until no new cut is added to Problem (EC.4). Although

this Benders decomposition algorithm largely reduces the problem size and improves com-

putational efficiency, it is insufficient to deal with our synthetic instances due to the widely

acknowledged primal degeneracy issue for network flow problems (Magnanti et al. 1986)

. We thus adopt a cut enhancement method and some acceleration strategies, which we

describe in the next two sections, respectively.

EC.4.2. Pareto-Optimal Benders Cut

We adapt the cut enhancement method proposed by Magnanti et al. (1986) to generate

pareto-optimal Benders cut by solving an auxiliary problem after a cut is identified by

solving Problem (EC.5). Let (x̄, z̄) denote a relative inner point of the feasible region speci-

fied by constraints (EC.1b)–(EC.1c), ηod(x,z) denote the optimal value of Problem (EC.5)

given x and z. The Auxiliary problem associated with (o, d)∈ S is

maximize
λ,θ,δ,π≥0

−λod
d +λod

o −
∑

(i,j)∈Eh

x̄ijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(x̄wl + z̄i)δ
od
ijwl−

∑
(i,j)∈E

πod
ij

(EC.7a)

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec11

subject to −λod
d +λod

o −
∑

(i,j)∈Eh

xijθ
od
ij −

∑
i∈Nh

∑
(i,j)∈E−

h (i)

∑
(w,l)∈Eh(i)

(xwl + zi)δ
od
ijwl−

∑
(i,j)∈E

πod
ij = ηod(x,z)

(EC.7b)

−λod
j +λod

i −1 [(i, j)∈ Eh] θodij −1(i∈Nh)
∑

(w,l)∈Eh(i)

δodijwl− πod
ij ≤ tij, ∀(i, j)∈ E .

(EC.7c)

Problem (EC.7) is different from problem (EC.5) in that it has an additional constraint

(EC.7b) ensuring that the solution generated by problem (EC.7) is optimal to problem

(EC.5). We initialize the relative inner points as

x̄ij =min{1, Bedge

2|Eh|cij
}, ∀(i, j)∈ Eh,

z̄i =min{1, Bnode

2|Nh|bi
}, ∀i∈Nh.

Through the solution process, every time an integral network design decision (x′,z′) is

found, we update the relative inner point as

x̄ij←
1

2
(x̄ij +x′

ij), ∀(i, j)∈ Eh,

z̄i←
1

2
(z̄ij + z′ij), ∀i∈Nh.

This cut enhancement strategy requires longer time to generate a single cut as an auxiliary

problem has to be solved. However, according to our computational experiments, it signifi-

cantly reduces the number of cuts needed for solving the problem, and thus achieves shorter

overall computation time compared to naive implementation of the Benders decomposition

algorithm.

EC.4.3. Other Acceleration Strategies

We adopt the following strategies to further accelerate the benders decomposition algo-

rithm.

• Initial Cut Generation. Before solving problem (EC.4), we apply the Benders decom-

position algorithm to solve its linear-programming (LP) relaxation. Following Bodur and

Luedtke (2017), we then add the cuts that are binding at the optimal solution of the LP

relaxation to problem (EC.4). These cuts help to obtain the LP-relaxation bound at the

root node of the branch-and-bound tree.

ec12 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

• Flow Variable Reduction. In Problem (EC.1), routing variables are created for all

(o, d) ∈ S and all (i, j) ∈ E . However, given that a dummy low-stress link whose travel

time is T2 is added to connect each OD pair, edges that are far away from the origin and

destination will not be used. Therefore, for each OD pair (o, d) ∈ S, we generate routing

variables xod
ij only if the sum of travel time from o to node i, travel time along edge (i, j), and

the travel time from node j to d is less than T . This pre-processing strategy significantly

reduces the problem size.

• Design Variable Reduction. In Problem (EC.4), road design decisions for different edges

are made separately. However, a more practical way of cycling infrastructure planning is

to build continuous cycling infrastructure on road segments, each consisting of multiple

edges. Such road segments can be identified through communication with transportation

planners. We incorporate this consideration by replacing the road design variables yij with

yp where p indicates the road segment that edge (i, j) belongs to. In our computational

and case studies, we group all edges between two adjacent intersections of arterial roads

into one project, resulting in 84 and 1,296 projects in the synthetic and real networks,

respectively. This preprocessing strategy reduces the number of binary decision variables.

EC.4.4. Hyper-parameter tuning for the ML-augmented Model

EC.4.5. Alternative Approach to Select k

In this section, we present a practical cross-validation approach to select the hyper-

parameter k for the kNN-augmented optimization model, which is summarized in Algo-

rithm 1.

EC.5. Computational Study Details

EC.5.1. The Synthetic Grid Network

As presented in Figure EC.1, we create a synthetic network comprising a set of arterial

roads, which are assumed to be high-stress, and local roads, which are assumed to be low-

stress. The arterial roads constitute a 6x6 grid. Intersections of arterial roads are assumed

to be signalized. On each arterial road segment, we place three nodes, each representing

the intersection of the arterial road and a local road. Each of these intersections is assigned

a traffic signal with a probability of 0.3. We generate 72 population centroids randomly

distributed within the 36 major grid cells. Each centroid represents one origin and is a

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec13

Algorithm 1 A solution method using the kNN-augmented model
Input: Width of the search window ω; Number of leader decisions to sample nd; Follower sample size p;

Follower features {fs}s∈S .

Output: A leader solution x̂kNN.

1: Randomly sample nd feasible leader solutions {xi ∈X}nd
i=1.

2: for i= 1 to nd do

3: Generate a dataset Di = {fs,Gs(xi)}s∈S .

4: Perform a random train-test split to obtain Dtrain
i and Dtest

i such that |Dtrain
i |= p.

5: for k= 1 to p do

6: Build kNN model Pi,k using Dtrain
i .

7: Calculate out-of-sample loss ei,k =
1

|Dtest
i |

∑
(fs,Gs(xi))∈Dtest

i
|Pi,k(f

s)−Gs(xi)|.

8: Select the best k∗ ∈ argmink∈[p]

{
1
nd

∑nd

i=1 ei,k

}
.

9: for k ∈K := {max{1, k∗−ω}, . . . ,min{p, k∗ +ω}} do

10: Obtain leader’s solution x̂k by solving problems (11) and (9) with k.

11: Select the best solution x̂kNN ∈ argminx {F (x) |x∈ {x̂k}k∈K}.

destination for all other centroids. We create low-stress edges that connect each centroid

to 70% of the intersections around the major grid cell in which that centroid is located.

All edges are bidirectional. Each direction is assigned a travel time randomly distributed

between 1 and 5. We use a constant travel speed of 1 to convert the generated travel time

to distance. We consider all the OD pairs between which the shortest travel time on the

overall network is less than 60, each assigned a weight uniformly distributed between 1 and

10. The network consists of 1,824 edges, 373 nodes, and 3,526 OD pairs. Arterial edges are

grouped into 84 candidate projects. Setting the road design budget to 100, 300, and 500

roughly corresponds to selecting 5, 10, and 15 projects, respectively.

EC.5.2. Accessibility Calculations

EC.5.2.1. Location-based accessibility measures. We vary the parameters of the

piecewise linear function g, mimicing three commonly used impedance function for location-

based accessibility (Figure EC.2):

1. Negative exponential function: β1 = 0.0375, β2 = 0.00625, T1 = 20, T2 = 60.

2. Linear function: β1 = 1/60, β2 = 0, T1 = 60, T2 = 60.

3. Rectangular function: β1 = 0.001, β2 = 0.471, T1 = 58, T2 = 60.

ec14 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.1 A synthetic grid network. Network components that are highlighted in black or dark grey constitute

a low-stress network while others are high-stress.

Figure EC.2 Negative exponential (EXP), rectangular (REC), and linear (LIN) impedance functions, and their

piecewise linear approximations (APP).

EC.5.2.2. Utility-based accessibility measure. We adopt the utility-based mea-

sure proposed by Liu et al. (2022a). It requires as input a set of candidate routes for each

OD pair and a constant α that reflects cyclists’ preference between bike-lane continuity

and bike-lane coverage along the routes. Following Liu et al. (2022a), we set the value of

α to 1.05. We generate three candidate routes for each OD pair by solving three shortest

path problems on the overall network using different edge travel cost. Specifically, we con-

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec15

sider i) randomly generated travel time (Section EC.1), ii) Euclidean distance between the

two ends, and iii) a uniform cost of 1 for all arterial roads and a uniform cost of 10 for

other roads. The first and second definitions correspond to the goals of time minimization

and distance minimization, both are commonly used by map software to generate route

recommendations. The third definition reflects the preference for biking on major roads.

EC.5.3. Predictive Features

Next, we present the implementation details of our representation learning framework

(EC.5.3.1), along with two baselines: TSP features (EC.5.3.2) and graph-theoretical fea-

tures (EC.5.3.3).

EC.5.3.1. Learned features. We apply the representation learning technique intro-

duced in Section 5.2 to learn OD-pair features. Implementation details are illustrated as

follows.

• Relationship Graph Construction. We sample nsim leader decisions for constructing the

relationship graph. Ideally, the leader decisions should be sampled considering a specific

design budget. However, the MaxANDP will be solved with various budgets in the com-

putational studies (and in real-world transportation planning settings). Learning follower

features multiple times may incur considerable computational burdens. Therefore, we con-

sider learning features that are applicable to MaxANDP instances with different budgets

by tweaking the leader decision sampling procedure. The high-level idea is to sample leader

decisions with budgets randomly generated from a “wide” range that covers most budgets

that may be used during the planning phase. As a result, the learned features contain

information about follower similarity under various design budgets. Specifically, our leader-

decision sampling procedure is parameterized by P̄ and Q̄ indicating, respectively, the

maximum number of projects and the maximum number of nodes that can be selected

in each sampled leader decision. Before generating a leader decision, we first randomly

generate the number of projects and the number of nodes to be selected from intervals

[1, P̄] and [1, Q̄], respectively. We then randomly select projects and nodes to form a leader

decision. The procedure is summarized in Algorithm 2. In our computational studies, we

set P̄ = 25, Q̄= 10, and nsim = 5,000. We present computational results about the impact

of nsim on feature quality in Section EC.5.10.

• Follower Embedding. In our computational study, we set nwalk = 50, nlength = 20, ω= 5,

and ξ = 16. We investigate the impact of ξ on feature quality in Section EC.5.10.

ec16 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Algorithm 2 Sampling leader’s decision for our cycling network design problem
Input: Number of decisions nsim; Set of cycling infrastructure project P; Set of high-stress nodes Nh,

Maximum number of infrastructure project selected P̄ ; Maximum number of nodes selected Q̄.

Output: A set of leader’s decisions X̄ .

1: Initialize X̄ = {}.

2: for i= 1 to nsim do

3: Generate p∼Uniform(1, P̄).

4: Generate q∼Uniform(1, Q̄).

5: Uniformly sample Pi ⊆P such that |Pi|= p.

6: Uniformly sample Qi ⊆Nh such that |Qi|= q.

7: Update X̄ ← X̄ ∪ {(Pi,Qi)}

EC.5.3.2. TSP features. We adapt the features proposed by Liu et al. (2021) for

predicting TSP objective values. Specifically, these features include

• The coordinates of the origin.

• The coordinates of the destination.

• The Euclidean distance between the origin and the center of the grid.

• The Euclidean distance between the destination and the center of the grid.

• The Euclidean distance between the origin and the destination.

• The area of the smallest rectangular that covers both the origin and the destination.

• The travel time of the shortest path from the origin to the destination on the overall

network.

EC.5.3.3. Graph theoretical features. We describe each follower s ∈ S using the

following node importance metrics in the relationship graph constructed in EC.5.3.1.

• Degree centrality: number of edges connected to node s.

• Closeness centrality: 1/
∑

t̸=s d(s, t), where d(s, t) indicates the shortest path distance

from node s to node t.

• Betweenness:
∑

v ̸=s ̸=t σvt(s)/σvt, where σvt is the total number of shortest paths from

node s to node t and σvt(s) is the number of those paths passing through node s.

• Eigenvector centrality: The s-th element of the left eigenvector associated with the

eigenvalue of maximum modulus that is positive.

• Current-flow centrality : as defined by Brandes and Fleischer (2005).

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec17

EC.5.4. Follower Sampling Methods

We consider three follower sampling methods: i) vector assignment p-median sampling, ii)

uniform sampling, and iii) p-center sampling. Uniform sampling selects each follower with a

uniform probability, while the other two methods require solving an optimization problem.

We next introduce the algorithms that we adopt to solve the optimization problems.

EC.5.4.1. Vector assignment p-median sampling. We adapt the meta-heuristic

proposed by Boutilier and Chan (2020) for solving the classical p-median problem to solve

the vector assignment p-median problem introduced in Section 4.3. Starting from a ran-

domly generated initial solution T , the algorithm iterates between a “swap” phase and an

“alternation” phase for niteration iterations. In the swap phase, we create a solution in the

neighborhood of T by randomly removing one follower from T and adding one follower

from S\T to T . We update T if the neighbor solution achieves a lower objective value for

the vector assignment p-median problem. We perform at most nswap such swaps in each

iteration. In the alternation phase, for each follower t∈ T , we first find a follower set from S
whose k-nearest neighbor in T includes t, and then solve an 1-median problem on this set.

We solve in total |T | 1-median problems and their optimal solutions form a new solution

to the vector assignment p-median problem. We update T if this solution achieves a lower

objective value. The algorithm is summarized in Algorithm 3.

We note that the implementation of this meta-heuristic requires calculating the distance

between every pair of followers in the feature space. For S that is relatively small, we

pre-calculate and store the distance matrix of the followers. However, storing the distance

matrix (over 200 GB) in RAM is practically prohibitive for a large S (e.g. the MaxANDP

of Toronto’s road network). To tackle the challenge, we calculate the distances on the fly

when needed during the searching process. More specifically, we only calculate the distances

from the current “medians” to other followers, resulting in a much smaller distance matrix

that can be stored in RAM. A GPU with 24 GB of RAM (NVIDIA RTX6000) is employed

to accelerate the distance-matrix calculation.

EC.5.4.2. p-center sampling. We select followers by solving the follower problem

min
T ⊆S

{
max
s∈S\T

min
t∈T

dF(f
s, f t)

∣∣∣∣ |T |= p

}
. (EC.10)

We adapt a greedy heuristic to solve this problem. Specifically, we initialize the follower

sample with a randomly selected follower s∈ S. Next, we iteratively select one unselected

ec18 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Algorithm 3 A Meta-Heuristic for Solving the Vector-Assignment p-Median Problem
Input: A set of followers S; Follower features {fs}s∈S ; A distance metric in the feature space dF ; Number

of followers to select p; Number of medians each node is assigned to k; Maximum number of iterations

niteration; Number of swaps in each iteration nswap; An oracle that calculates the objective value of the vector

assignment p-median problem Op−median for any given solution; An oracle that finds the k-nearest neighbor

of a follower in a given set OkNN.

Output: A set of selected followers T .

1: Randomly sample T ⊆ S such that |T |= p.

2: Initialize iteration counter minteration = 1

3: while miteration ≤ niteration do

4: for i= 1 to nswap do ▷ Swap

5: Randomly sample a follower s∈ S\T and a follower t∈ T .

6: Create a follower set T ′ = T \{t}∪ {s}

7: if Op−median(T ′)<Op−median(T) then update T ←T ′

8: Initialize a follower set T ′′ = {} ▷ Alternation

9: for t∈ T do

10: Create a follower set St = {s∈ S\T | t∈OkNN(s,T)}.

11: Solve an 1-median problem on St: s′′← argmins∈St

∑
l∈St dF(f

s, f l).

12: Update T ′′←T ′′ ∪{s′′}

13: if Op−median(T ′′)<Op−median(T) then update T ←T ′′

14: Update miteration←miteration +1

follower and add it to the follower sample until p followers have been selected. In each

iteration, we first select calculate the shortest distance from each unselected follower to the

follower sample, and then select the follower with the largest distance. This greedy heuristic

generates 2-optimal solution for Problem (EC.10). This is the best possible approximation

that a heuristic algorithm can provide for the p-center problem because, for any δ < 2,

the existence of δ-approximation implies P =NP (Gonzalez 1985, Hochbaum and Shmoys

1985). To empirically improve the solution quality, we apply this algorithm for nrepeat times

and select the one that achieves the lowest objective value for Problem (EC.10). For the

computational experiments presented in Section 5, we set the value of nrepeat to 200. The

heuristic is summarized in Algorithm 4.

EC.5.5. Euclidean norm-based Wasserstein scenario reduction.

Following Bertsimas and Mundru (2023), we employ a k-means-based heuristic to solve

the l2-norm Wasserstein scenario reduction problem. The steps are as follows:

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec19

Algorithm 4 A Greedy Heuristic for Solving the p-Center Problem
Input: A set of followers S; Follower features {fs}s∈S ; A distance metric in the feature space dF ; Number of

followers to select p; An oracle that calculates the objective value of the p-center problem Op-center; Number

of times the process is repeated nrepeat.

Output: A set of selected followers T .

1: for i= 1 to nrepeat do

2: Randomly sample a follower s∈ S.

3: Initialize follower sample Ti = {s}.

4: while |Ti| ≤ p do

5: Calculate the distances to the selected set ds =mint∈Ti
dF(f

s, f t) for all s∈ S\Ti.

6: Select a follower s′ = argmaxs∈S\Ti
ds.

7: Update Ti = Ti ∪{s′}.

8: Select T = argmini=1∈[nrepeat]
Op-center(Ti)

1. Given followers {f s}s∈S , we apply the k-means algorithm to partition them into k

clusters.

2. For each cluster, we select the follower closest to the cluster center.

EC.5.6. DPCV scenario reduction.

This algorithm, adapted from (Dupačová et al. 2003), adds one follower to our sample at

the time until the number of followers selected is no less than our target. In each step, we

select the follower that minimizes the l2 Wasserstein distance between the sampled and

unsampled followers.

EC.5.7. Choosing L̄

We propose a practical approach to iteratively search for an appropriate L̄. The search

starts from a given L0, which is estimated using data associated with randomly generated

leader decisions, and then gradually increases this value until the generated leader decision

stops improving. The complete solution approach is presented as Algorithm 5.

EC.5.8. Computational Setups

All the algorithms were implemented using Python 3.8.3 on an Intel i7-8700k processor

at 3.70 GHz and with 16GB of RAM. Optimization algorithms were implemented with

Gurobi 9.1.2. The DeepWalk algorithm was implemented with Gensim 4.1.2. All the ML

models for cycling accessibility prediction were implemented with Scikit Learn 1.0.2.

ec20 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Algorithm 5 A solution method using the parametric regression-augmented model
Input: Step size lstep; Number of leader decisions to sample nd; Follower sample size p; Follower features

{fs}s∈S .

Output: A leader solution x̂reg.

1: Randomly sample nd feasible leader solutions {xi ∈X}nd
i=1.

2: for i= 1 to nd do

3: Generate dataset Di = {fs,Gs(xi)}s∈S .

4: Randomly select a training set Dtrain
i ⊆Di such that |Dtrain

i |= p.

5: Train a prediction model Pi,k : Rξ→R on Dtrain
i .

6: Calculate the training loss ei =
1

|Dtrain
i |

∑
fs,Gs(xi)∈Dtrain

i
|Pi,k(f

s)−Gs(xi)|.

7: Select a starting point L0 =median{e1, e2, . . . , end
}.

8: Obtain T by solving Problem (11).

9: Obtain an initial solution x0 by solving Problem (10) with L0 and T .

10: Initialize step counter s= 1

11: repeat

12: Update Ls =Ls−1 + lstep.

13: Obtain xs by solving Problem (10) with Ls and T .

14: until F (xs)>F (xs−1).

15: Select the best solution x̂reg = xs−1.

EC.5.9. ML Model Implementation Details

For the four ML models we consider in Section 5, we select the hyper-parameters (if any)

based on the mean of median out-of-sample prediction performance over 1000 datasets.

We note that we do not create a validation set because the goal is to achieve as good

performance as possible on the out-of-sample follower set S\T . The generalization of the

ML models outside S is not of interest in our study. The Linear regression does not involve

any hyper-parameter. The neighborhood sizes of kNN , the regularization factors of the

lasso regression and ridge regression are summarized in Tables EC.1–EC.3, respectively.

Table EC.1 Neighborhood sizes of k-nearest neighbor regression.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

TSP
100 1 1 1 1
300 1 1 1 1
500 1 1 1 1

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec21

Table EC.2 Regularization parameters of lasso regressions.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 0.004 0.008 0.020 0.020
300 0.004 0.008 0.010 0.020
500 0.004 0.006 0.010 0.020

TSP
100 0.006 0.010 0.040 0.020
300 0.008 0.010 0.030 0.030
500 0.007 0.010 0.020 0.040

Table EC.3 Regularization parameters of ridge regressions.

Accessibility Measure

Feature Budget EXP LIN REC UT

Learning
100 50 60 40 30
300 50 40 10 60
500 30 20 10 100

TSP
100 260 240 140 150
300 210 170 170 150
500 150 150 150 100

EC.5.10. Additional Results on the Impact of Hyperparameters on Feature Quality

We focus on two hyperparameters that may affect the quality of the REP features: i)

feature dimensionality ξ, and ii) the number of leader decisions to sample nsim. The idea

is to first use a relatively large nsim, which makes sure the embedding algorithm is well-

informed about the relationship between followers, to find the smallest ξ that supports ML

models to achieve “good” prediction performance. We want ξ to be small because it helps

to reduce the size of the ML-augmented model. Once a ξ is chosen, we then search for a

small nsim that makes the learned features perform well. We want nsim to be small because

it reduces the computational efforts in constructing the follower relationship graph. We

focus on the prediction performance of kNN using UNI samples because kNN constantly

achieves the best prediction performance among all ML models considered.

EC.5.10.1. The impact of ξ. We follow the convention to set the value of ξ to the

powers of two. We vary ξ in {2,4,8,16} because the synthetic network has 3,526 followers

and the smallest training sample considered is 1% of them, corresponding to 35 followers.

Training linear regression models using 35 data points and features of 32 dimensions or

more may lead to serious overfitting issues. We set nsim to 5,000 when choosing ξ.

ec22 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.3 Out-of-sample prediction performance of kNN using REP features of 2, 4, 8, and 16 dimensions.

Figure EC.3 summarizes the predictivity of REP features of different dimensions. For

location-based accessibility measures, increasing the number of dimensions leads to lower

out-of-sample prediction error. For utility-based accessibility measures, REP features of

four dimensions achieve the lowest error when the sample size is 1% or 2% of the original

follower set, while 8- and 16-dimensional REPs become more predictive with larger training

samples. For convenience, we choose to set ξ = 16 for all accessibility measures. However,

based on the results presented in Figure EC.3, carefully tuning ξ for different problems

may improve ML models’ out-of-sample prediction accuracy.

EC.5.10.2. The impact of nsim. We then fix ξ = 16 and vary nsim in {10, 100, 1,000,
5,000}. Figure EC.4 summarizes the predictivity of REP features learned with different

nsim. In general, considering more leader decisions lead to better prediction performance of

the REP features, but the marginal improvement decreases as nsim increases. For location-

based accessibility measures, the improvement from nsim = 100 to nsim =5,000 is negligible

compared to the improvement from nsim = 10 to nsim = 100. For the utility-based measure,

REP features learned with nsim=1,000 is as predictive as REP features learned with nsim =

5,000.

EC.6. Case Study Details

EC.6.1. Network Construction and Pre-Processing

We retrieve Toronto centerline network from Toronto Open Data Portal (City of Toronto

2020). We follow the following steps to process the network data.

1. We remove roads where cycling is physically impossible or legally prohibited, including

“highway”, “highway ramp”, “railway”, “river”, “hydro line”, “major shoreline”, “major

shoreline (land locked)”, “geostatistical line”, “creek/tributary”, “ferry lane” per the City’s

definition.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec23

Figure EC.4 Out-of-sample prediction performance of kNN using REP features learned using 10, 100, 1000, and

5000 sampled leader decisions.

2. We remove all redundant nodes. A node is considered redundant if it is not an end of

a road or an intersection of three or more edges. These nodes are included in the original

network to depict the road shape, but are unnecessary from a modeling perspective.

3. We replace local roads with low-stress edges that connect DA centroids to intersec-

tions along arterial roads. We solve a shortest-path problem from each DA centroid to

each intersection located on its surrounding arterial roads using the low-stress network. If

a low-stress path is found, we add a bi-directional low-stress edge that connects the DA

centroid and the intersection and set its travel time to the travel time along the path. All

local roads are then removed because we do not consider building new cycling infrastruc-

ture on local roads, and the role of local roads in our problem is to connect DA centroids

to arterial roads, which can be served by the added artificial edges. The node and edge

removal procedures are illustrated in Figure EC.5.

Figure EC.5 The procedures of removing redundant nodes and edges.

4. We group arterial edges to form candidate projects. A candidate project is defined as

a continuous road segment that connects two adjacent intersections of arterial roads. Such

a road segment may be represented as multiple arterial edges in the network due to the

presence of arterial-local intersections. Grouping these edges together allows us to create

fewer road design variables. The average length of the projects is 1.48 km.

ec24 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

5. Each DA is represented by its geometric centroid and is manually connected to its

nearest point in the cycling network using a low-stress edge with zero travel time.

6. We discard all the OD pairs that are currently connected via a low-stress path because

building new cycling infrastructure will not affect the accessibility of these OD pairs.

EC.6.2. Follower Embedding Details

We apply similar procedures as introduced in Section EC.5.3 to learn follower features. We

highlight the key difference in each step as follows.

• Relationship Graph Construction. We sample nsim =10,000 leader decisions with P̄ =

300 and Q̄= 100. We note that 149,496 (11.3%) of the 1,327,849 OD pairs have zero acces-

sibility under all sampled leader decisions. As a result, their similarities to other OD pairs

are all zero according to the adopted similarity measure. These OD pairs are mostly out-

side downtown Toronto, where the road networks are highly stressful. Connecting these

OD pairs with low-stress routes requires constructing a large amount of new cycling infras-

tructure, which is beyond the considered budget (100 km). We choose to exclude these OD

pairs from OD pair embedding and thus exclude them from OD pair selection and ML-

augmented model to avoid the computational burdens of sampling more leader decisions.

However, we do take these OD pairs into consideration when evaluating leader decisions.

• Follower Embedding. We set nwalk = 50, nlength = 50, ω= 5, and ξ = 32.

EC.6.3. Computational Setups

Optimization algorithms were implemented with Python 3.8.3 using Gurobi 9.1.2 on an

Intel i7-8700k processor at 3.70 GHz and with 16GB of RAM. The heuristic for solving

vector-assignment p-median problem is accelerated with h an NVIDIA P100 GPU. The

DeepWalk algorithm was implemented with Gensim 4.1.2.

For optimal network expansions, we use follower samples of 2,000 followers (OD pairs),

and solve the kNN-augmented model with them. We use the kNN-augmented model

because the network design budget (≤ 100 km) falls into the small budget regime, where

the kNN-augmented model generally outperforms the linear regression-augmented as pre-

sented in Section 5.4. We set the solution time limit to 3 hours for all optimization models.

The greedy network expansion is implemented using the same machine as used by the

optimization models and is parallelized using eight threads.

e-companion to Author: Machine Learning for Bilevel and Stochastic Programming ec25

EC.6.4. Comparison between Greedy and Optimal Expansions

Figure EC.6 presents the cycling infrastructure projects selected by the greedy heuris-

tic and our approach given a road design budget of 70 km, as an example. The optimal

expansion is 11.2% better than the heuristic expansion as measured by the improvement in

Toronto’s total low-stress cycling accessibility. Both algorithms choose many cycling infras-

tructure projects in the downtown core area, where a well-connected low-stress cycling

network has already been constructed, and where job opportunities are densely distributed.

These projects connect many DAs to the existing cycling network and thus grant them

access to job opportunities via the existing network. However, unlike the greedy heuris-

tic that spends almost all the road design budgets to expand the existing network, our

approach identifies four groups of projects that are not directly connected to the existing

network (as highlighted by the black frames in Figure EC.6). The greedy heuristic does

not select these projects because they have little impact on the total cycling accessibility if

constructed alone. However, when combined, these projects significantly improve the acces-

sibility of their surrounding DAs by breaking the high-stress barriers between low-stress

cycling islands.

ec26 e-companion to Author: Machine Learning for Bilevel and Stochastic Programming

Figure EC.6 Greedy and optimal expansions given a road design budget of 70 km.

	Introduction
	Problem Motivation: Cycling Infrastructure Planning
	Technical Challenge
	Contributions
	Literature review
	Model Preliminaries
	The Bilevel Model
	Connection to Two-Stage Stochastic Programs
	Simplifying the notation.

	Reduced Model
	ML-Augmented Model

	Integrating a Prediction Model
	Function Classes
	Lg-nearest neighbor regression.
	Parametric regression.

	Theoretical Properties
	Prediction model setup.
	Assumptions.
	Bound on LgNN-augmented model solution.
	Bound on parametric regression-augmented model solution.

	Practical Implementation
	LgNN-augmented model.
	Parametric regression.

	Computational Study: Algorithm Performance on Synthetic Cycling Network Design Problem
	Maximum Accessibility Network Design Problem
	Learning Follower Representations
	An NLP-inspired approach.
	Alternative approaches.
	Experiment 1: Predicting OD-Pair Accessibility Using ML Models
	Experiment 2: Generating Leader Decisions using ML-augmented Models
	Case Study: Cycling Infrastructure Planning in the City of Toronto
	Cycling Network in Toronto
	Expanding Toronto's Cycling Network
	Managerial Insights
	Conclusion
	Proofs of Solution Quality Bounds
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Bound Tightness Results
	Proof of Theorem 3
	Proof of Theorem 4

	Formulation of MaxANDP
	Solution Method for MaxANDP
	Benders Decomposition
	Pareto-Optimal Benders Cut
	Other Acceleration Strategies
	Hyper-parameter tuning for the ML-augmented Model
	Alternative Approach to Select Lg

	Computational Study Details
	The Synthetic Grid Network
	Accessibility Calculations
	Location-based accessibility measures.
	Utility-based accessibility measure.
	Predictive Features
	Learned features.
	TSP features.
	Graph theoretical features.

	Follower Sampling Methods
	Vector assignment Lg-median sampling.
	Lg-center sampling.

	Euclidean norm-based Wasserstein scenario reduction.
	DPCV scenario reduction.
	Choosing Lg
	Computational Setups
	ML Model Implementation Details
	Additional Results on the Impact of Hyperparameters on Feature Quality
	The impact of Lg.
	The impact of Lg.

	Case Study Details
	Network Construction and Pre-Processing
	Follower Embedding Details
	Computational Setups
	Comparison between Greedy and Optimal Expansions

