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Abstract
Inverse optimization has been increasingly used to
estimate unknown parameters in an optimization
model based on decision data. We show that such
a point estimation is insufficient in a prescriptive
setting where the estimated parameters are used
to prescribe new decisions. The prescribed deci-
sions may be low-quality and misaligned with hu-
man intuition and thus are unlikely to be adopted.
To tackle this challenge, we propose conformal
inverse optimization, which seeks to learn an un-
certainty set for the unknown parameters and then
solve a robust optimization model to prescribe
new decisions. Under mild assumptions, we show
that the suggested decisions can achieve bounded
out-of-sample optimality gaps, as evaluated using
both the ground-truth parameters and the decision
maker’s perception of the unknown parameters.
Our method demonstrates strong empirical perfor-
mance compared to classic inverse optimization.

1. Introduction
Inverse optimization (IO) seeks to estimate unknown param-
eters in an optimization model based on decision data. The
estimated parameters can then be used to prescribe future
decisions. For this IO pipeline to succeed in practice, the
prescribed decision should not only be of high-quality (as
evaluated using the ground-truth parameters) but also align
with human intuition (i.e., perceived to be of high-quality).
The latter encourages algorithm adoption (Chen et al., 2023;
Donahue et al., 2023), which is critical in many real-world
applications, e.g., rideshare vehicle positioning (Liu et al.,
2023), bin packing (Sun et al., 2022), and product assort-
ment (Kesavan & Kushwaha, 2020; Kawaguchi, 2021).

As an example, rideshare platforms, e.g., Uber and Lyft,
provide a shortest-path to the driver at the start of a trip
based on real-time traffic data (Nguyen, 2015). The driver
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then relies on her perception of the road network formed
through past experience to evaluate the path. The driver
may deviate from the suggested path if it is perceived to be
low-quality. Although seasoned drivers are often capable
of identifying a better path due to their tacit knowledge of
the road network (Merchán et al., 2022), such deviations
impose operational challenges as it may cause rider safety
concerns and affect downstream decisions such as arrival
time estimation, trip pricing, and rider-driver matching (Hu
et al., 2022). Therefore, the platform may be interested
in leveraging historical paths taken by drivers to suggest
high-quality paths for future trips, as evaluated using both
the travel time and the driver’s perception.

In this paper, we first show that the classic IO pipeline may
generate decisions that are low-quality and misaligned with
human intuition. We next propose conformal IO, which first
learns an uncertainty set from decision data and then solves
a robust optimization model with the learned uncertainty
set to prescribe decisions. Finally, we prove that the pro-
posed approach has provable guarantees on the actual and
perceived solution quality. Our contributions are as follows.

• A new framework. We propose a new prescriptive
IO pipeline that integrates i) a novel method to learn
uncertainty sets from decision data and ii) a robust
model for decision recommendation.

• Theoretical guarantees. We prove that, with high
probability, the learned uncertainty set contains param-
eters that make future observed decisions optimal. This
coverage guarantee leads to provable bounds on the
optimality gap of the decisions from conformal IO, as
evaluated using the ground-truth parameters and the
decision maker’s (DM’s) perceived parameters.

• Performance. Through experiments, we demonstrate
strong performance of conformal IO compared to clas-
sic IO and provide insights into modeling choices.

2. Literature Review
Inverse optimization. IO is a method to estimate unknown
parameters in the objective function (Ahuja & Orlin, 2001;
Chan et al., 2014) or constraint matrix (Bertsimas et al.,
2015; Birge et al., 2017; Chan & Kaw, 2020) of an optimiza-
tion model based on decision data. Early IO papers focus
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on deterministic settings where the observed decisions are
assumed to be optimal to the specified optimization model.
Recently there has been growing interest in applying IO in
stochastic settings where the observed decisions are subject
to measurement and execution errors, and bounded rational-
ity (Esfahani & Kuhn, 2018). Progress has been made to
provide estimators that are statistically consistent (Aswani
et al., 2018; Birge et al., 2022), tractable (Chan et al., 2019),
and robust to data corruption (Esfahani et al., 2018). See
Chan et al. (2023b) for a comprehensive review.

Our paper is positioned in the stochastic stream because the
observed decisions are assumed to be generated using noisy
perceptions of the unknown parameters. Unlike existing
methods that provide a point estimation of the unknown
parameters, we learn an uncertainty set that can be used in a
robust optimization model to prescribe new decisions.

Estimate, then optimize. Conformal IO belongs to a family
of data-driven optimization methods called “estimate, then
optimize” (Elmachtoub et al., 2023). Recent research sug-
gests that even small estimation errors may be amplified in
the optimization step, resulting in significant decision errors.
This issue can be mitigated by training the estimation model
with decision-aware losses (Wilder et al., 2019; Mandi et al.,
2022; Elmachtoub & Grigas, 2022) and robustifying the
optimization model (Sun et al., 2023; Chan et al., 2023a).

We take a similar approach as the second stream, yet deviate
from them by i) utilizing decision data instead of observa-
tions of the unknown parameters, and ii) focusing on both
the ground-truth and perceived solution quality, the latter of
which has not been studied in this stream of literature.

Data-driven uncertainty set construction. Uncertainty
set construction involves deciding the structure and size
of the uncertainty set. Central to this problem are i) the
tractability of the resulting robust model and ii) the price
of robustness (Bertsimas & Sim, 2004). Early endeavours
use prior knowledge about the parameter uncertainty to de-
sign sets that are polyhedral (Ben-Tal & Nemirovski, 1999),
ellipsoidal (Ben-Tal & Nemirovski, 2000), cardinality con-
strained (Bertsimas & Sim, 2004), and norm constrained
(Bertsimas et al., 2004). The size of these uncertainty sets is
usually tied to the coverage level specified by the DM. More
recently, data have become a critical ingredient to define
new uncertainty set structures (Delage & Ye, 2010; Ben-
Tal et al., 2013; Esfahani & Kuhn, 2018; Gao & Kleywegt,
2023) and calibrate the size of the uncertainty set (Bertsimas
et al., 2018; Chenreddy et al., 2022; Sun et al., 2023).

Our paper is related to the work of Sun et al. (2023) who first
use an ML model to predict the unknown parameters and
then calibrate an uncertainty set around the prediction using
prediction errors estimated from a validation set. However,
this approach does not apply in our setting as it requires

observations of the unknown parameters, which we do not
have access to. Our paper presents the first approach to cali-
brating uncertainty sets using decision data, which in many
applications is more readily observable than parameters.

Algorithm aversion. AI is being increasingly used to aug-
ment human decisions. However, humans may be reluc-
tant to adopt algorithmic suggestions despite their supe-
rior performance—a phenomenon called algorithm aversion
(Burton et al., 2020; Jussupow et al., 2020). Empirical
studies have identified a range of factors that explain such
phenomenon, including algorithm transparency (Kizilcec,
2016), algorithm accuracy (Yin et al., 2019; Dietvorst et al.,
2015), lack of decision control (Dietvorst et al., 2018; Meiss-
ner & Keding, 2021), and lack of human inputs (Kawaguchi,
2021). Recent studies reveal that AI solutions are more
likely to be adopted if they align with the users’ intuition
(Bauer et al., 2023; Chen et al., 2023; Donahue et al., 2023;
Liu et al., 2023), which motivates this study.

We contribute to this stream of literature by providing a prin-
cipled approach to generate decisions that are high-quality
and intuitive, aiming to mitigate algorithm aversion.

3. Preliminaries
In this section, we first present the problem setup (Section
3.1) and then describe the challenges with the classic IO
pipeline (Section 3.2). Finally, we discuss alternatives to
mitigate the challenges and provide intuition on why robus-
tifying the optimization model would help (Section 3.3).

3.1. Problem Setup

Consider a forward optimization problem

FO(θ,u) : minimize
x∈X (u)

f(θ,x) (1a)

where x ∈ Rn is the decision vector whose feasible re-
gion X (u) is non-empty and is parameterized by exogenous
parameters u ∈ Rm, θ ∈ Rd is a parameter vector, and
f : Rn×d → R is the objective function. Suppose u is
distributed according to Pu supported on U . There exists a
ground-truth parameter vector θ∗ that is unknown to the DM.
Instead, the DM obtains a decision x̂ by solving FO(θ̂,u)

where θ̂ is a noisy perception of θ∗. We assume that, while
the distribution Pθ of θ̂ is unknown, it is supported on a
known bounded set Θ ⊂ Rd and that θ∗ is within the sup-
port of Pθ . Let P(θ,u) denote the joint distribution of θ̂ and
u. Let f̃ : Θ×U → R be an oracle that returns the optimal
value of FO and x̃ : Θ×U → Rn be an oracle that returns
an optimal solution to FO drawn uniformly at random from
XOPT(θ,u) := argmin {f(θ,x) |x ∈ X (u)}.

Given a dataset of N decision and exogenous parameter
pairs D = {x̂k,uk}k∈[N ], we are interested in finding a de-
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cision policy x̄ : U → Rn to suggest decisions for future u.
We require x̄(u) ∈ X (u) for any u ∈ U . As discussed later,
x̄(u) is usually generated by solving an optimization model
that may have multiple optimal solutions. So we consider
randomized policies (e.g., uniformly sample from a set of
optimal solutions). This is nonrestrictive because a deter-
ministic policy can be recovered from a randomized policy
that samples the deterministic solution with probability one.
We use the following metrics to evaluate x̄.

Definition 3.1. The actual optimality gap (AOG) of a deci-
sion policy x̄ is defined as

AOG(x̄) := E
[
f (θ∗, x̄(u))− f̃ (θ∗,u)

]
(2)

where the expectation is taken over the joint distribution of
the random variable u and the decision sampled using the
possibly randomized policy x̄.

Definition 3.2. The perceived optimality gap (POG) of a
decision policy x̄ is defined as

POG(x̄) := E
[
f
(
θ̂, x̄(u)

)
− f̃

(
θ̂,u

)]
. (3)

where the expectation is taken with respect to the random-
ness in θ̂, u, and possibly x̄.

AOG is an objective performance measure under the ground-
truth parameters θ∗. Achieving a low AOG means that x̄
can generate high-quality decisions. In contrast, POG is a
subjective measure that depends on the DM’s perception of
the problem. Achieving a low POG is critical to mitigate
algorithm aversion (Burton et al., 2020).

3.2. An Inverse Optimization Pipeline

Finding x̄ is challenging for three reasons. First, unlike
many machine learning problems where the prediction target
is unconstrained, we require x̄(u) to be a feasible solution
to FO(θ,u) which may involve a large number of complex
constraints. End-to-end supervised learning approaches that
predict x̂ based on u can often fail as they typically do not
provide feasibility guarantees. An optimization module is
often needed to recover feasibility or produce feasible so-
lutions based on u and some estimated θ. Second, we do
not have access to θ∗ or θ̂, which precludes using classic
machine learning techniques to estimate the parameters. Fi-
nally, since AOG and POG are tied to θ∗ and θ̂, respectively,
it is unclear how to design loss functions for parameter esti-
mation that lead to low AOG or POG. To make things even
worse, these two metrics may not align with each other, so
we are essentially dealing with a bi-objective problem.

In light of the first two challenges, a classic IO pipeline
(visualized in Figure 1) has been proposed to first obtain
a point estimation θ̄ of the unknown parameters and then
employ a policy x̄IO(u) := x̃(θ̄,u) to prescribe decisions

Figure 1. Classic and conformal IO pipelines.

for any u ∈ U (Rönnqvist et al., 2017; Babier et al., 2020).
Specifically, we can estimate the parameters by solving the
following inverse optimization problem

IO(D) : minimize
θ

1

N

∑
k∈[N ]

ℓ
(
x̂k,XOPT(θ,uk)

)
, (4)

where ℓ is a non-negative loss function that returns 0 when
x̂k ∈ XOPT(θ,uk). For instance, the following two loss
functions are commonly used in the literature

Definition 3.3. The decision loss of θ is given by

ℓD
(
x̂,XOPT(θ,u)

)
= min

x∈XOPT(θ,u)
∥x− x̂∥2. (5)

Definition 3.4. The sub-optimality loss of θ is given by

ℓS
(
x̂,XOPT(θ,u)

)
= min

x∈XOPT(θ,u)
f(θ, x̂)− f(θ,x). (6)

The decision loss, which penalizes the L2 distance between
the observed and suggested decisions, enjoys statistical con-
sistency when the forward problem is convex (Aswani et al.,
2018). The statistical consistency implies that the resulting
policy can achieve zero AOG when i) E(θ̂) = θ∗ and ii) a
large D is available. However, this may not be attainable in
practice because E(θ̂) ̸= θ∗ and IO(D) may be challenging
to solve when D is large since it is non-convex even if the
FO is convex. For many real-world problems, e.g., routing
problems that involve a large number of discrete decisions
and unknown parameters, the sub-optimality loss, which pe-
nalizes the optimality gap achieved by the observed decision
under the estimated parameters, is often preferable because
it offers better computational properties. As remarked by
Esfahani et al. (2018), we encounter a situation similar to
binary classification where it is preferable to minimize the
convex hinge/cross-entropy loss instead of the 0-1 loss even
if the 0-1 loss is the actual metric of interest. While such a
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Figure 2. Illustration of the classic and conformal IO in Example
3.1. The gray areas are the feasible region X (u). The black arrows
correspond to the ground-truth parameter θ∗. The gray arrows are
the extreme rays of Θ. The blue and green arrows are the point
estimations (θ̄). The green area is the uncertainty set C(θ̄, α). The
black circles are the optimal solution to FO(θ∗, u). The blue and
green circles are the suggested decisions from the two pipelines.
Note that x̄IO may suggest any decisions on the facet corresponding
to the constraint x1 + ux2 ≥ u, which are omitted for clarity.

trade-off is acceptable in some applications, we suggest that
it is undesirable in our setting because the resulting policy
can achieve arbitrarily large AOG and POG. To see this,
consider the following example (visualized in Figure 2).
Example 3.1. Let FO(θ, u) be the following problem

minimize θ1x1 + θ2x2 (7a)
subject to x1 + ux2 ≥ u (7b)

0 ≤ x1 ≤ u (7c)
0 ≤ x2 ≤ 2. (7d)

Let the ground-truth θ∗ = (cos(π/4), sin(π/4)) and
U = {u} where u > 1 is a real constant. We are
given a dataset D = {x̂k, u}Nk=1 where x̂k = x̃(θ̂k, u)

with θ̂k uniformly and independently drawn from Θ =
{(cos δ, sin δ) | δ ∈ (0, π/2)} for all k ∈ [N ].

Lemma 3.5. w In Example 3.1, let θ̄N denote an opti-
mal solution to IO(D) with the sub-optimality loss (6),
we have P

(
θ̄N = θu

)
→ 1 as N → ∞, where θu :=(

1/
√
1 + u2, u/

√
1 + u2

)
.

Lemma 3.5 shows that, when using IO(D) with the sub-
optimality loss to estimate the unknown parameter in Exam-
ple 3.1, the probability of the estimated parameter being θu

converges to one asymptotically. This implies that asymptot-
ically we are almost certain that x̄IO(u) = x̃(θu, u), i.e. the
policy that samples uniformly from the facet corresponding
to the constraint x1+ux2 ≥ u. As a result, x̄IO can achieve
arbitrarily large AOG and POG when u is set to a large
enough value since decisions closer to the end of (u, 0) are
of low-quality and perceived to be of low-quality by most
DMs. See Appendix A for complete statements and proofs.
We then arrive at the following negative result for the classic
IO pipeline.
Proposition 3.6. Let D be a dataset, θ̄ be an optimal
solution to IO(D) using the sub-optimality loss (6), and

x̄IO(u) = x̃(θ̄,u) for any u ∈ U , then x̄IO can achieve
arbitrarily large AOG and POG.

Consequently, the suggested decisions are not useful to the
DM as they are of poor quality, and they are unlikely to be
adopted as they do not align with the DM’s intuition.

3.3. Robustifying the Inverse Optimization Pipeline

A natural idea to improve the AOG and POG of x̄ is to
robustify the decision pipeline. In particular, we may ro-
bustify i) the inverse problem, which has been studied by
Esfahani et al. (2018), and ii) the decision recommendation
problem, which is what we propose in this paper. In this
section, we show that robustifying the inverse problem does
not address the challenge of unbounded AOG and POG, but
robustifying the forward problem does.

3.3.1. ROBUSTIFYING THE INVERSE PROBLEM.

Consider the following loss function.

Definition 3.7 (Esfahani et al. (2018)). The distributionally
robust sub-optimality loss of θ is given by

ℓDR-S (θ) := sup
Q∈Bp

r(P̂u,x̂)

ρQ
[
ℓS

(
x̂,XOPT(θ,u)

)]
(8)

where P̂u,x̂ is the sample distribution of D, Bp
r(P̂u,x̂) is a

p-Wasserstain ball of radius r centered at P̂u,x̂, and ρQ is a
risk measure, e.g., the value at risk.

The distributionally robust inverse optimization problem is

DRIO(D) : minimize
θ∈Θ

ℓDR-S(θ). (9)

As shown by Esfahani et al. (2018), the estimated parameters
from DRIO achieve bounded out-of-sample sub-optimality
loss with a high probability. However, this does not imply
bounded AOG and POG for the decision policy.

Lemma 3.8. In Example 3.1, θu is an optimal solution to
DRIO(D).

Lemma 3.8 shows that, in Example 3.1, the estimated param-
eter from DRIO(D) may still be θu. Hence, the decision
policy is identical to x̄IO whose AOG and POG can be un-
bounded. The fundamental reason behind these negative
results is the misalignment between the sub-optimality loss
and the evaluation metrics. Achieving a low sub-optimality
loss means that the suggested and observed decisions are of
similar quality as evaluated using the estimated parameters.
However, this does not speak to the similarity between these
two decisions with respect to the DM’s perceived parameters
(POG) or the ground-truth parameters (AOG). Therefore,
the out-of-sample guarantees on the sub-optimality loss do
not translate into bounded AOG or POG.
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3.3.2. ROBUSTIFYING THE FORWARD PROBLEM.

Alternatively, we can consider robustifying the forward prob-
lem when prescribing new decisions. Specifically, we solve
the following robust forward optimization problem

RFO
(
C(θ̄,α),u

)
: minimize

x∈X (u)
maximize
θ∈C(θ̄,α)

f(θ,x) (10a)

where C is an uncertainty set with θ̄ being its center and α
representing parameters that control its shape/size. In this
paper, since we generally do not know the scale of θ (e.g.,
a driver’s perceived travel cost on each road segment in a
network), we focus on cases where the optimal decision to
FO is invariant to the scale of θ, i.e., if x ∈ XOPT(θ,u),
then x ∈ XOPT(βθ,u) for any β ∈ R+. So, we assume
∥θ̄∥2 = 1 and focus on the following uncertainty set.

C(θ̄, α) :=
{
θ ∈ Rd | ∥θ∥2 = 1, θ⊺θ̄ ≥ cosα

}
(11)

where α ∈ (0, π] represents the max angle between θ̄ and
any vector in the uncertainty set.

Remark 3.9. The scale-invariant condition apply to Example
3.1 and other cases where f is linear in θ. However, it does
not imply that f is linear in θ. To see this, consider a forward
problem with f(θ, x) = (exp(θ)− 1)x and feasible region
[−1, 1]. The optimal solution is x = −1 when θ > 0 and
x = 1 when θ < 0, so it is invariant to the scale of θ.

Now, using Example 3.1, we analyze the performance of a
policy that utilizes RFO to prescribe decisions and provide
insights into the conditions for bounding AOG and POG.

Lemma 3.10. In Example 3.1, let x̄CIO(u) be an optimal
solution to RFO

(
C(θ̄N , α), u

)
where θ̄N is an optimal

solution to IO(D) with the sub-optimality loss (6). When
α ∈ (0, π/2), we have P [AOG(xCIO) = 0] → 1 as N →
∞.

Lemma 3.11. In Example 3.1, let x̄CIO(u) be an optimal
solution to RFO

(
C(θ̄N , α), u

)
where θ̄N is an optimal

solution to IO(D) with the sub-optimality loss (6). When
α ∈ (0, π/2), we have P

[
POG(x̄CIO) < π/2

√
2
]
→ 1 as

N → ∞.

Lemmas 3.10 and 3.11 show that, when using RFO to
prescribe new decisions, the probability of achieving upper-
bounded AOG and POG converges to one as N goes to
infinity, as long as α ∈ (0, π/2). Interestingly, Lemmas
3.10 and 3.11 do not require the uncertainty set to contain
θ∗ or most θ̂k. In fact, a very small α can help to bound
AOG and POG. However, the performance of this approach
still depends on the choice of α, which is non-trivial when
FO(θ,u) is more complex than a two-dimensional linear
program. We address this problem next.

4. Conformal Inverse Optimization
In this section, we present a principled approach to learn
uncertainty sets that lead to provable performance guaran-
tees. As presented later, the learned uncertainty set contains
parameters that make the next DM’s decision optimal with
a specified probability. We call this approach conformal IO
due to its connection to conformal prediction (Vovk et al.,
2005), which aims to predict a set that contains the next pre-
diction target with a specified probability. As illustrated in
Figure 1, conformal IO has three steps: i) data split, ii) point
estimation, and iii) uncertainty set calibration. We present
these three steps in Section 4.1 and analyze the properties of
the learned uncertainty set and conformal IO in Section 4.2.

4.1. Learning an Uncertainty Set

Data split. We first split D into training and validation sets,
namely Dtrain and Dval. Let Ktrain and Kval index Dtrain and
Dval, respectively, while Ntrain = |Dtrain| and Nval = |Dval|.

Point estimation. Given the training set Dtrain, we next
apply data-driven IO techniques to obtain a point estimation
θ̄ of the unknown parameters. The most straightforward
way is to solve IO(Dtrain) with any loss function. Alter-
natively, one may consider using end-to-end learning and
optimization methods that do not require observations of
the parameter vectors, e.g., the ones proposed by Berthet
et al. (2020) and Tan et al. (2020). We remark that the point
estimation can also come from other sources, for example,
from a machine learning model that predicts the parameters.
Our uncertainty set calibration method, which we introduce
next, is independent of the point estimation method.

Uncertainty set calibration. Given a point estimation θ̄,
we next calibrate an uncertainty set that, with a specified
probability, contains parameters that make the next observed
decision optimal. This property is critical for the results in
Section 4.2 to hold. While we can naively achieve this by
setting α = π, the resulting RFO may generate overly
conservative decisions. Hence, we are interested in learning
the smallest uncertainty set that satisfies this condition. We
solve the following calibration problem

CP(θ̄,Dval, γ) :

minimize
α,{θk}k∈Kval

α (12a)

subject to x̂k ∈ XOPT(θk,uk), ∀k ∈ Kval (12b)∑
k∈Kval

1
[
θk ∈ C(θ̄, α)

]
Nval + 1

≥ γ (12c)

∥θk∥2 = 1, ∀k ∈ Kval (12d)
0 ≤ α ≤ π, (12e)

where decision α controls the size of the uncertainty set,
decisions θk represent a possible parameter vector associ-
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ated with data point k ∈ Kval, γ ∈ [0, 1] is a DM-specified
confidence level, and 1 is an indicator function that returns
1 if the condition is true and 0 otherwise.

Objective (12a) minimizes the size of the uncertainty set.
Constraints (12b) ensure that θk can make the observed
decision x̂k optimal for k ∈ Kval. Constraint (12c) ensures
that at least γ of the decisions in Dval can find a vector
in C that makes it optimal. Constraints (12d) ensure that
the parameter vectors are on the unit sphere as defined in
Equation (11). Constraint (12e) specifies the range of α.
Remark 4.1 (Optimality Conditions). The representation of
Constraints (12b) depends on the structure of FO. For ex-
ample, when the FO is a linear program, Constraints (12b)
can be replaced with the dual feasibility and strong duality
constraints. When the FO is a general convex optimization
problem, we can use the KKT conditions. For non-convex
forward problems, we can replace Constraints (12b) with

f(θk, x̂k) ≤ f(θk,x), ∀x ∈ X (u), (13)

which can be generated on-the-fly in a cutting-plane fashion.
Remark 4.2 (Feasibility). For CP to be feasible, we require,
for each observed decision, there exists a θ ∈ Θ that make
it optimal. This condition holds for a range of problems,
e.g., the shortest path problem, travelling salesman problem,
and knapsack problem, even if the DM is subject to bounded
rationality, i.e., the DM settles for suboptimal solutions due
to cognitive/computational limitations. For problems where
this condition is violated, we may pre-process Dval to project
x̂ to a point in X (u) such that the condition is satisfied.

Solving CP is hard for two reasons. First, it is non-convex
regardless of the forward problem structure due to Con-
straints (12d). Second, Constraints (12b) involve the opti-
mality conditions of Nval problems, so the size of CP scales
up quickly as Nval increases. Nevertheless, as highlighted
in Section 4.2, considering a large Dval is critical to ensure
desirable properties of the learned uncertainty set, imposing
considerable computation burdens. Below we introduce a
decomposition method to solve CP efficiently.

Theorem 4.3. Let Dval be a dataset, γ ∈ [0, 1], θ̄ ∈ Rd,
τ = ⌈γ(Nval + 1)⌉ and Γτ be an operator that returns
the τ th largest value in a set. The optimal solution to
CP(θ̄,Dval, γ) is αγ := arccos (Γτ ({ck}k∈Kval)) with

ck := maximize
θk

θ⊺
kθ̄ (14a)

subject to x̂k ∈ XOPT(θk,uk) (14b)
∥θk∥2 ≤ 1. (14c)

Theorem 4.3 states that we can solve CP by first solving
Nval optimization problems whose size is independent of
Nval and then find a quantile in a set of Nval elements. The
first step is parallelizable and the second step can be done in

O (Nval log(τ)) time. Since Problem (14) is a maximization
problem, we can replace the constraint ∥θk∥2 = 1 with con-
straint (14c), so Problem (14) is convex when the forward
problem is convex.

Let ΘOPT(u,x) :=
{
θ ∈ Rd

∣∣x ∈ XOPT(θ,u), ∥θ∥2 = 1
}

.
Remark 4.4 (Alternative Formulation). In CP, we make a
modeling choice of letting γ of the validation data points sat-
isfy ΘOPT(uk, x̂k)∩C(θ̄, α) ̸= ∅. An alternative is to let γ
of the validation data points satisfy θ̂k ∈ C(θ̄, α), or equiv-
alently ΘOPT(uk, x̂k) ⊆ C(θ̄, α), which generally leads to
a larger α, and thus more conservative decisions. We make
this choice for two reasons. First, as illustrated in Example
3.1, covering most θ̂k is unnecessary for conformal IO to
achieve bounded AOG and POG. Second, using the alterna-
tive formulation would make Problem (14) a minimization
problem, so Constraint (14c) needs to be an equality to avoid
the trivial solution θk = 0. Consequently, Problem (14)
cannot be cast as an equivalent convex problem.

4.2. Properties of the Learned Uncertainty Set

Next, we analyze the properties of the learned uncertainty
set and the performance of conformal IO. We make the
following assumption that is standard in the literature.

Assumption 4.5 (I.I.D. Samples). The validation set Dval is
generated using x̂k := x̃(θ̂k,uk) where (θ̂k,uk) are i.i.d.
samples from P(θ,u) for all k ∈ Kval.

Theorem 4.6 (Uncertainty Set Validity). Let Dval be a
dataset that satisfies Assumption 4.5, (θ̂,u) be a new i.i.d.
sample from P(θ,u), x̂ = x̃(θ̂,u), Θ̂ = ΘOPT (u, x̂), and
αγ be an optimal solution to CP(θ̄,Dval, γ) where θ̄ ∈ Rd.
We have, for any γ ∈ [0, Nval/(Nval + 1)], that

P
(
Θ̂ ∩ C(θ̄, αγ) ̸= ∅

)
≥ γ. (15)

For any γ ∈ [0, 1], with probability at least 1− 1/Nval,∣∣∣P(
Θ̂ ∩ C(θ̄, αγ) ̸= ∅

)
− γ

∣∣∣ ≤ ϵ(Nval) (16)

where

ϵ(Nval) :=

√
8 log(Nval + 1) + 2 logNval

Nval
+

2

Nval
. (17)

Theorem 4.6 states that our learned uncertainty set is conser-
vatively valid and asymptotically exact (Vovk et al., 2005).
More specifically, first, our method will produce a set that
contains a θ that makes the next DM’s decision optimal no
less than γ of the time that it is used (conservatively valid).
The probability in Inequality (15) is with respect to the joint
distribution over Dval and the new sample. Second, once the
set is given, we have high confidence that, the probability
of the next DM’s decision being covered is within ϵ(Nval)
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from γ. The probability in Inequality (16) is with respect to
the new sample, while the high confidence is with respect
to the draw of the validation data set. Overall, we have the
almost sure convergence of P

(
Θ̂ ∩ C(θ̄, αγ) ̸= ∅

)
to γ as

N goes to infinity, i.e. the coverage is asymptotically exact.

Next, we relate the validity results to the performance of
conformal IO. We need additional assumptions as follows.
Assumption 4.7 (Lipschitz Continuity). Let X̂ :=
∪θ̂,u∈Θ×UX

OPT(θ̂,u). For any x̂ ∈ X̂ , there exists a con-
stant ν(x̂) ∈ R+ such that, for any θ,θ′ ∈ Θ, we have
f(θ, x̂)− f(θ′, x̂) ≤ ν(x̂)∥θ − θ′∥2.
Assumption 4.8 (Bounded Inverse Feasible Set). There
exists a constant η ∈ R+ such that, for any θ,θ′ ∈
ΘOPT (x̂,u), for some x̂ ∈ X̂ and u ∈ U , we have
∥θ − θ′∥2 ≤ η.
Assumption 4.9 (Linearity). Function f is linear in θ.
Assumption 4.10 (Bounded Divergence). There exists a
constant σ ∈ R+ such that ∥E(θ̂)− θ∗∥2 ≤ σ.

Assumption 4.7 is satisfied by many problems. For example,
since Θ is bounded, when f is convex in θ, it is Lipschitz in
θ on Θ. Assumption 4.8 is mild because ΘOPT (x̂,u) is by
definition bounded for any x̂ ∈ X̂ and u ∈ U , and is usually
much smaller than Θ. Assumption 4.9 restricts the class
of objective functions, yet is satisfied by many optimiza-
tion models, e.g., routing problems, the knapsack problem,
etc. Assumption 4.10 states that the distance between the
expected perceived parameters and the ground-truth param-
eters is upper bounded. It is reasonable in many real-world
settings. For example, rideshare drivers’ perceived travel
cost (θ̂) should not be too different from the travel time
(θ∗) as the latter is an important factor that drivers consider.
We note that Assumptions 4.9 and 4.10 are needed only for
bounding AOG.
Theorem 4.11 (Conformal IO Achieves Bounded POG).
Let x̄CIO(u) be an optimal solution to RFO

(
C(θ̄, α1),u

)
for any u ∈ U , where θ̄ ∈ Rd and α1 are chosen such that,
for a new sample (θ′,u′) from P(θ,u) and x′ = x̃(θ′,u′),

P
(
C(θ̄, α1) ∩ΘOPT(u′,x′) ̸= ∅

)
= 1. If Assumptions

4.7 and 4.8 hold, then

POG(x̄CIO) ≤ (η − 2 cos 2α1 + 2)µ+ ηµCIO (18)

where µ := E[ν(x̃(θ̂,u))] and µCIO := E(ν[x̄CIO(u)]).
Corollary 4.12 (Conformal IO Achieves Bounded AOG).
Let x̄CIO(u) be an optimal solution to RFO

(
C(θ̄, α1),u

)
for any u ∈ U , where θ̄ ∈ Rd and α1 are chosen such that,
for a new sample (θ′,u′) from P(θ,u) and x′ = x̃(θ′,u′),

P
(
C(θ̄, α1) ∩ΘOPT(u′,x′) ̸= ∅

)
= 1. If Assumptions

4.7–4.10 hold, then

AOG(x̄CIO) ≤ (2− 2 cos 2α1 + η+ σ)µ∗ + (η+ σ)µCIO

(19)

where µ∗ := E (ν[x̃(θ∗,u)]).

Theorem 4.11 and Corollary 4.12 state that, when the uncer-
tainty set contains a θ that makes the next DM’s decision op-
timal almost surely, conformal IO achieves upper-bounded
POG and AOG. Such uncertainty sets exist because for any
θ̄ ∈ Rd, we can simply set α = π to achieve 100% cover-
age, although the resulting bounds can be large. Instead, we
can solve CP to calibrate an uncertainty set that achieves
close-to-100% coverage using a large validation set. We
may also consider adding a small ∆α ∈ R+ to the αγ ob-
tained by solving CP. Such extra protection can be useful
in special cases where all the observed decisions are consis-
tent with one parameter vector (i.e. αγ = 0) as it helps to
break ties when prescribing new decisions and thus lowers
µCIO (recall Example 3.1). Moreover, we show numerically
in Section 5 that, when using γ < 100%, conformal IO still
demonstrates favorable performance compared to classic IO.
In fact, using a γ < γmax might yield better performance
than using γ = γmax.

5. Numerical Studies
We next present numerical experiments with shortest path
problem (linear program) and knapsack problem (integer
program) instances to compare the performance of confor-
mal and classic IO. See Appendix C.2 for the formulations.

5.1. Experiment Setup

Shortest path problem data. We use a 5×5 grid network
G(N , E) where N and E indicate the node and edge sets,
respectively. For each edge (i, j) ∈ E , we draw a ground-
truth travel cost θij uniformly from [1, 10]. For each driver
k ∈ [N ], we randomly select two distinct nodes uo

k, u
d
k ∈ N

as her origin and destination, respectively. We generate her
perceived travel cost on edge (i, j) as

θ̂ijk = (θij ∗ pijk + ϵijk )
+ + ϵ0 (20)

where pijk are uniformly drawn from [1/2, 2], ϵijk are drawn
from a normal distribution with mean 0 and standard devia-
tion 1, and ϵ0 is set to 0.1 to ensure θ̂ijk is positive.

Knapsack problem data. We consider a knapsack problem
of d = 10 items. The ground-truth value θi and weight wi

of item i ∈ [10] are drawn uniformly from [1, 10]. For each
DM k ∈ [N ], we generate a budget uk = qk

∑
i w

i where
qk is uniformly drawn from [1/5, 5]. DM k’s perceived
value of item i is generated using Equation (20). We assume
all DMs have access to the ground-truth item weights.

Implementation. For both problems, we solve a data-driven
IO problem with Θ =

{
θ ∈ Rd

+

∣∣ ∥θ − 1∥2 ≤ d/4
}

and
the sub-optimality loss to obtain point estimations. We use
a cutting plane method detailed in Appendix C.3 to solve

7
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IO. The calibration problems and their solution methods
are in Appendix C.4. When recommending new decisions,
the RFO is solved with a cutting plane method detailed in
Appendix C.5. We implement the conformal IO pipeline
with γ ∈ {10%, 30%, 50%, 70%, γmax}. The computational
setup is summarized in Appendix C.1. We set αmin = 0.1.

Evaluation. We perform a 60/20/20 train-validation-test
split. The classic IO pipeline uses the union of the training
and validation sets. The conformal IO pipeline uses the
training set for point estimation and the validation set for
calibration. Both methods have access to the same amount
of data and are evaluated on the same test set. We repeat
this process ten times with different random seeds.

5.2. Results

The value of robustness. As shown in Figure 3, conformal
IO typically achieves lower POG and AOG than the classic
IO. On average, when varying γ, conformal IO improves
the AOG by 20.1–30.4% and the POG by 15.0–23.2% for
the shortest path problem, and improves the the AOG by
40.3–57.0% and the POG by 13.5–20.1% for the knapsack
problem. When performing head-to-head comparisons, con-
formal IO outperforms the classic IO 70–80% of the time in
AOG and 70–90% of the time in POG for the shortest path
problem, and 100% of the time in both AOG and POG for
the knapsack problem. The solutions generated by confor-
mal IO are not only of higher quality, but also perceived to
be higher quality, and thus are more likely to be adopted.

Figure 3. Performance of classic (blue) and conformal IO (green).

The choice of confidence level. We observe that the per-
formance of conformal IO, as measured by both AOG and
POG, improves quickly as the value of γ increases from 0 to
50% with diminishing marginal benefits. The performance
remains stable when increasing the value of γ from 50%
to 100%. When implementing conformal IO, it is possible

Figure 4. Percentage reduction in test AOG and POG when using
the conformal IO (wins in green) vs classic IO (wins in red).

to improve its out-of-sample performance by carefully tun-
ing the confidence level using a standard cross-validation
approach. However, this requires an additional validation
dataset. If such a dataset is unavailable, setting γ to a rela-
tively large value usually yields decent performance, which
aligns with our theoretical analysis.

The impact of the train-validation data split. Another
important parameter within the conformal IO pipeline is
Nval. Intuitively, both the point estimation and uncertainty
set calibration can benefit from more data. However, when
the dataset is small, we need to strike a balance between
these two steps aiming to achieve lower AOG and POG. To
shed light on this choice, we implement conformal IO for the
shortest path problem under different dataset sizes (Ntrain +
Nval ∈ {160, 320, . . . , 800}, corresponding to 20–100% of
the dataset used in the previous analysis) and train-validation
split ratios (Nval/(Ntrain+Nval) ∈ {20%, 40%, 60%, 80%}).
We set γ = γmax for simplicity, which disadvantages our
approach. As shown in Figure 4, when the given dataset is
very small (160), there is no benefit of using conformal IO
simply because we do not have enough data to obtain a good
point estimation and a good uncertainty set at the same time.
However, the performance of classic IO quickly plateaus as
the dataset grows. When given a mid- or large-sized dataset,
we can generally benefit from using more data points in the
calibration step, echoing our theoretical analysis.

6. Conclusion
In this paper, we propose conformal IO, a novel IO pipeline
for recommending high-quality decisions that align with
human intuition. We present the first approach to learning
uncertainty sets from decision data, which is then utilized
in a robust model to prescribe new decisions. Under mild
conditions, we prove that conformal IO achieves bounded
optimality gaps, with respect to the ground-truth param-
eters and the DM’s perceived parameters. This suggests
that decisions may be more likely to be adopted compared
to decisions from the classic IO pipeline. Our computa-
tional experiments demonstrate the strong performance of
conformal IO compared to the classic IO approach.
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A. Omitted Statements and Proofs in Section 3
A.1. Poof of Lemma 3.5

Proof. We first show that x̂ ∈ {(0, 1), (u, 0)} almost surely. Let δu := arccos
(
1/
√
1 + u2

)
, so cos δu = 1/

√
1 + u2 and

sin δu = u/
√
1 + u2. It is easy to verify that, when θ̂k ∈ Θ1 := {(cos δ, sin δ) | δ ∈ (0, δu]}, we have x̂k = x̃(θ̂k, u) =

(0, 1) almost surely; When θ̂k ∈ Θ2 := {(cos δ, sin δ) | δ ∈ (δu, π/2)}, we have x̂k = x̃(θ̂k, u) = (u, 0) almost surely.
Since θ̂k is uniformly distributed in θ̂ ∈ Θ = Θ1 ∪Θ2, the distribution of x̂k is

x̂k =

{
(0, 1), w.p. 2δu/π
(u, 0), w.p. (π − 2δu)/π.

(21)

Given a sample set D = {uk, x̂k}k∈[N ], let N1 and N2, respectively, denote the numbers of (0, 1) and (u, 0) in D. We next
show that when N1 > 0 and N2 > 0, θu is the unique optimal solution to IO(D). Specifically, in Example 3.1, IO(D) is
presented as follows.

θ̄N := argmin
θ∈Θ

N1

N
l1(θ) +

N2

N
l2(θ) (22)

where

l1(θ) =

{
0, if θ ∈ Θ1,

θ2 − uθ1, if θ ∈ Θ2,
(23)

and

l2(θ) =

{
uθ1 − θ2, if θ ∈ Θ1,

0, if θ ∈ Θ2.
(24)

A simple calculation gives that when N1 > 0 and N2 > 0, the minimum is 0 which occurs uniquely at θ = (cos δu, sin δu);
When N2 = 0, the minimum is 0 which occurs when θ ∈ Θ1; When N1 = 0, the minimum is 0 which occurs when θ ∈ Θ2.
Therefore, we have

P(N1N2 > 0) ≤ P
(
θ̄N = (cos δu, sin δu)

)
≤ 1. (25)

Given the probability distribution given in Equation (21) and that D is generated using i.i.d. samples from Pθ, we have

P(N1N2 > 0) = 1−
(
2δu
π

)N

−
(
1− 2δu

π

)N

, (26)

which converges to 1 as N goes to infinity. Therefore, we conclude that P(θ̄N = (cos δu, sin δu)) converges to 1 as N goes
to infinity.

A.2. Proof of Proposition 3.6

Proof. According to Lemma 3.5, in Example 3.1, when using IO with the sub-optimality loss (6), the probability of the
estimated parameter being θ̄ = θu := (cos δu, sin δu) goes to one as N goes to infinity, where δu := arccos(1/

√
1 + u2).

In fact, as long as our decision dataset contains both (0, 1) and (u, 0), the estimated parameter will be θ̄ = θu. Hence, it
suffices to show that the decision policy based on this estimation, i.e. x̄IO(u) := x̃(θu, u), can achieve unbounded AOG and
POG as we change u, which we prove in the following two lemmas.

Lemma A.1. In Example 3.1, let x̄IO(u) = x̃(θu, u). For any v ∈ R+ there exists some ū > 1 such that AOG(x̄IO) > v
for any u > ū.

Proof. According to the definition of x̃, we know that x̄IO(u) is uniformly drawn from

XOPT(θu, u) =

{(
ut√
u2 + 1

, 1− t√
u2 + 1

) ∣∣∣∣ t ∈ [
0,
√

u2 + 1
]}

. (27)
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Since the ground-truth θ∗ = (cos(π/4), sin(π/4)), the true optimal solution is x∗ = (0, 1) with f̃(θ∗, u) =
√
2/2. Hence,

we have

AOG(x̄IO) =

∫ √
u2+1

0

√
2

2
√
u2 + 1

(
1− t√

u2 + 1
+

ut√
u2 + 1

)
dt−

√
2

2
=

√
2(u− 1)

4
(28)

Therefore, for any v ∈ R+, there exists ū = 2
√
2v + 1 such that AOG(x̄IO) > v for any u > ū.

Lemma A.2. In Example 3.1, let x̄IO(u) = x̃(θu, u). for any v ∈ R+ there exists some ū > 1 such that POG(x̄IO) > v
for any u > ū.

Proof. According to the definition of x̃, x̄IO(u) is uniformly drawn from

XOPT(θu, u) =

{(
ut√
u2 + 1

, 1− t√
u2 + 1

) ∣∣∣∣ t ∈ [
0,
√

u2 + 1
]}

. (29)

It is easy to verify that, when θ̂ ∈ Θ1 := {(cos δ, sin δ) | δ ∈ (0, δu]}, we have x̂k = x̃(θ̂, u) = (0, 1) with f̃(θ̂, u) = θ̂2
almost surely; When θ̂ ∈ Θ2 := {(cos δ, sin δ) | δ ∈ (δu, π/2}, we have x̂k = x̃(θ̂, u) = (u, 0) with f̃(θ̂, u) = uθ̂1 almost
surely. Since the optimal solution drawn from XOPT(θu, u) is independent of the DM’s perception θ̂, we have

POG(x̄IO) =

∫ δu

0

∫ √
u2+1

0

1√
u2 + 1

[
ut√
u2 + 1

cos δ +

(
1− t√

u2 + 1

)
sin δ − sin δ

]
dt dδ

+

∫ π/2

δu

∫ √
u2+1

0

1√
u2 + 1

[
ut√
u2 + 1

cos δ +

(
1− t√

u2 + 1

)
sin δ − u cos δ

]
dt dδ

=
1

2

∫ δu

0

(u cos δ − sin δ) dδ +
1

2

∫ π/2

δu

(−u cos δ + sin δ) dδ

=
√
1 + u2 − u+ 1

2
.

>
u− 1

2

The inequality holds because
√
1 + u2 > u. Therefore, we have, for any v ∈ R+, there exists ū = 2v + 1 such that

POG(x̄IO) > v for any u > ū.

Based on Lemmas A.1 and A.2, we conclude that x̄IO can achieve unbounded AOG and POG.

A.3. Proof of Lemma 3.8

Proof. According to the proof of Lemma 3.5, we know that the distribution of x̂k is

x̂k =

{
(0, 1), w.p. 2δu/π
(u, 0), w.p. (π − 2δu)/π.

(30)

Moreover, when setting θ = θu, the sub-optimality losses associated with both (0, 1) and (u, 0) are zero. Hence, the
minimum of the distributionally robust sub-optimality loss equals zero, which occurs at θ = θu, because the distributionally
robust sub-optimality loss is a weighted sum of the sub-optimality losses associated with (0, 1) and (u, 0).

A.4. Proof of Lemma 3.10

Proof. We first show that when θ̄ = θu and α ∈ (0, π/2), RFO
(
C(θ̄, α), u

)
has a unique optimal solution (0, 1). Let

x1 = (0, 1), x2 = (0, 2), x3 = (u, 0) and x4 = (u, 2) denote the four extreme points of the feasible region X (u),
respectively, and

R(x) := max
θ∈C(θu,α)

θ1x1 + θ2x2. (31)

12
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Since FO is a linear program, it suffices to show that, when α ∈ (0, π/2), R(x1) < min{R(x2), R(x3), R(x4)} because,
if there exists an optimal solution that is not an extreme point, then there must exist another extreme point xi such that
R(x1) = R(xi) where i ̸= 1. Next, we compare R(x1) with R(x2), R(x3), and R(x4).

It is easy to verify that

R(x1) =

{
sin(δu + α), if α ∈ (0, π/2− δu],

1, if α ∈ (π/2− δu, π/2).
(32)

For x2, we have

R(x2) =

{
2 sin(δu + α), if α ∈ (0, π/2− δu],

2, if α ∈ (π/2− δu, π/2).
(33)

Hence, we have R(x1) < R(x2) when α ∈ (0, π/2).

For x3, we have

R(x3) =

{
u cos(δu − α), if α ∈ (0, δu],

u, if α ∈ (δu, π/2).
(34)

Since u > 1, we have π/2 − δu < π/4 < δu < π/2. We will show that R(x1) < R(x3) when α is in (0, π/2 − δu),
[π/2− δu, δu), and [δu, π/2). When α ∈ (0, π/2− δu), we have

R(x1) = sin(δu + α)

= sin δu cosα+ cos δu sinα

=
u√

1 + u2
cosα+

1√
1 + u2

sinα

<
u√

1 + u2
cosα+

u2

√
1 + u2

sinα

= u

(
1√

1 + u2
cosα+

u√
1 + u2

sinα

)
= u (cos δu cosα+ sin δu sinα)

= u cos(δu − α)

= R(x3).

The second line holds due to the sum of angles identity. The third line holds due to the definition of δu. The fourth line
holds because u > 1. The fifth line is obtained by simple manipulation. The sixth line holds due to the definition of δu. The
seventh line holds due to the sum of angles identity.

When α ∈ [π/2− δu, δu), we have

R(x1) = 1

< 1 +
u− 1

u2 + 1

=
u√

u2 + 1

1√
u2 + 1

+
u2

√
u2 + 1

1√
u2 + 1

= u cos δu
1√

u2 + 1
+ u sin δu

1√
u2 + 1

< u cos δu cosα+ u sin δu sinα

= u cos(δu − α)

= R(x3).

The second line holds because u > 1. The third line is obtained through simple manipulation. The forth line holds due to
the definition of δu. For the fifth line, we know that α ∈ [π/2− δu, δu) ⊆ [π/4− π/2] where cosα is strictly decreasing

13
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in α and where sinα is strictly increasing in α. Therefore, cosα < cos δu = 1/
√
u2 + 1 and sinα ≤ sin(π/2 − δu) =

cos δu = 1/
√
u2 + 1. Hence, the fifth line holds. The sixth line holds due to the sum of angles identity.

When α ∈ [δu, π/2), we have R(x1) = 1 < u = R(x3).

Hence, R(x1) < R(x3) when α ∈ (0, π/2).

For x4, we have
R(x4) = max

δ∈C(δu,α)
u cos δ + 2 sin δ. (35)

Let δ∗1 denote the optimal solution to the maximization problem for calculating R(x1). It is easy to verify that δ∗1 ∈ (0, π/2)
when α ∈ (0, π/2). So cos δ∗1 > 0 and sin δ∗1 > 0. Hence, we have

R(x4) = max
δ∈C(δu,α)

u cos δ + 2 sin δ ≥ u cos δ∗1 + 2 sin δ∗1 > sin δ∗1 = R(x1). (36)

The first inequality holds because δ∗1 may not be the maximizer of the problem associated with x4. The second inequality
holds because u > 1, cos δ∗1 > 0, and sin δ∗1 > 0.

Hence, when α ∈ (0, π/2), RFO (C(δu, α), u) has a unique optimal solution x1, so x̄CIO(u) = (0, 1) almost surely.
Given that (0, 1) is also the optimal solution to FO(δ∗, u), we have AOG(x̄CIO) = 0 when θ̄N = θu and α ∈ (0, π/2).
According to Lemma 3.5, we know that P(θ̄N = θu) → 1 as N → ∞. So we conclude that, when α ∈ (0, π/2), we have
P [AOG(x̄CIO) = 0] → 1 as N → ∞.

A.5. Proof of Lemma 3.11

Proof. As shown in the proof of Lemma 3.10, when α ∈ (0, π/2), the RFO (C(θu, α), u) has a unique optimal solution
(0, 1). So x̄CIO(u) = (0, 1) almost surely, when θ̄N = θu and α ∈ (0, π/2). It is easy to verify that, when θ̂ ∈ Θ1 :=

{(cos δ, sin δ) | δ ∈ (0, δu]}, we have x̂k = x̃(θ̂, u) = (0, 1) almost surely; When θ̂ ∈ Θ2 := {(cos δ, sin δ) | δ ∈
(δu, π/2)}, we have x̂k = x̃(θ̂, u) = (u, 0) almost surely. Hence, we have

POG(x̄CIO) =

∫ δu

0

π

2
× 0 dδ +

∫ π/2

δu

π

2
× sin δ dδ = −π

2
cos δ

∣∣∣π/2
δu

=
π

2
√
1 + u2

<
π

2
√
2
. (37)

The inequality holds because u > 1.

According to Lemma 3.5, we know that P(θ̄N = θu) → 1 as N → ∞. So we conclude that, when α ∈ (0, π/2), we have
P
[
POG(x̄CIO) < π/2

√
2
]
→ 1 as N → ∞.

B. Proof of Statements in Section 4
B.1. Definitions

Definition B.1 (Empirical Rademacher Complexity). Let F be a class of functions mapping from Z = {Z1, Z2, . . . , Zm}
to [a, b] and D be a fixed sample of size N with elements in Z , then the empirical Rademacher Complexity of F with
respect to the sample D is defined as

R̂D(F) := Eσ

sup
f∈F

1

N

∑
i∈[N ]

σif(Zi)

 (38)

where σ = (σ1, σ2, . . . , σN )⊺ with σi’s being independent uniform random variables taking values in {−1, 1}.

Definition B.2 (Rademacher Complexity). Let P denote the distribution according to which samples are drawn. For any
integer N ≥ 1, the Rademacher complexity of a function class F is the expectation of the empirical Rademacher complexity
over the samples of size N drawn from P:

RN (F) := ED∼PN

[
R̂D(F)

]
(39)
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Definition B.3 (Growth Function). Let H be a class of functions that take values in {−1, 1}. The growth function
ΠH : N → N for H is defined as

ΠH(N) := max
(Z1,Z2,...,ZN )∈ZN

|{(h(Z1), h(Z2), . . . , h(ZN )) |h ∈ H}| (40)

which measures the maximum number of distinct ways in which N data points in Z can be classified using the function
class H.

B.2. Useful Lemmas

Lemma B.4 (Corollary 3.1 in Mohri et al. (2018)). Let H be a class of functions taking values in {1,−1}, then, for any
integer N ≥ 1, the following holds

RN (H) ≤
√

2 logΠH(N)

N
. (41)

Lemma B.5 (Theorem 4.10 in Wainwright (2019)). For any b-uniformly bounded class of functions F , any positive integer
N ≥ 1, and any scalar δ ≥ 0, with probability at least 1− exp

(
−Nδ2/(2b2)

)
, we have

sup
f∈F

∣∣∣∣∣∣ 1N
∑
i∈[N ]

f(Xi)− E [f(Xi)]

∣∣∣∣∣∣ ≤ 2RN (F) + δ (42)

where R(F) denotes the Rademacher complexity of the function class F .

B.3. Proof of Theorem 4.3

Proof. For convenience, we define Θ̂k := ΘOPT(uk, x̂k) for any k ∈ [N ].

We first present the extensive formulation of Problem (12). When α ∈ [0, π], cosα is a strictly decreasing in α. Therefore,
minimizing α is equivalent to maximizing the value of cosα. We can replace the decision variable α in Problem (12) with
a new decision variable c := cosα with an additional constraint t with −1 ≤ c ≤ 1. In addition, we introduce a new set
of decision variables yk ∈ {0, 1} that indicate if Θ̂k intersects with the learned uncertainty set (= 1) or not (= 0) for any
k ∈ Kval. Problem (12) can be presented as follows.

maximize
c,{θk}k∈Kval ,{yk}k∈Kval

c (43a)

subject to x̂k ∈ XOPT(θk,uk), ∀k ∈ Kval (43b)
θ⊺
kθ̄ ≥ c+ 2(yk − 1), ∀k ∈ Kval (43c)∑

k∈Kval

yk ≥ ⌈γ(Nval + 1)⌉ (43d)

∥θk∥2 = 1, ∀k ∈ Kval (43e)
− 1 ≤ c ≤ 1 (43f)
yk ∈ {0, 1}, ∀k ∈ Kval. (43g)

Constraints (43b) ensure that θk is a member of Θ̂k for any k ∈ Kval. Constraints (43c) decide if θk should be taken into
account when calculating the maximal cosine value c based on if Θ̂k intersects with C. Constraint (43d) ensures that C
intersects with at least ⌈γ(Nval + 1)⌉ inverse feasible sets. Constraint (43e) enforces θk to be on the unit sphere as defined
in Equation (11). Constraints (43f)–(43g) specify the ranges of the decision variables.

Observing that the objective of Problem (43) is to maximize c and that decision variables θk of different data points only
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interact in Constraints (43c). We can re-write Problem (43) as

maximize c (44a)
subject to c ≤ ck − 2(yk − 1), ∀k ∈ Kval (44b)∑

k∈Kval

yk ≥ ⌈γ(Nval + 1)⌉ (44c)

− 1 ≤ c ≤ 1 (44d)
yk ∈ {0, 1}, ∀k ∈ Kval, (44e)

where

ck := maximize
θk

θ⊺
kθ̄ (45a)

subject to x̂k ∈ XOPT(θk,uk) (45b)
∥θk∥2 ≤ 1. (45c)

Note that we replace Constraints (43e) with Constraints (45c) because the objective of Problem (45) is to maximize the
inner product of θk and θ̄, so the maximum only occurs when ∥θk∥2 = 1. We further observe that the optimal solution
to Problem (44a) is to set yk = 1 for all k such that ck ≥ Γτ

(
{ck}k∈Kval

)
and yk = 0 otherwise. Therefore, the optimal

objective value of Problem (44a) is c = Γτ

(
{ck}k∈Kval

)
corresponding to αγ = arccos Γτ

(
{ck}k∈Kval

)
.

B.4. Proof of Theorem 4.6

Proof. We first prove the learned uncertainty set is conservatively valid. Following the conformal prediction language
used by Vovk et al. (2005), we define a conformality measure of each data point,i.e. an observed decision and exogenous
parameter pair, Aθ̄ : Rn × U → R+ as follows

Aθ̄(x̂,u) := maximize
θ

θ⊺θ̄ (46a)

subject to θ ∈ ΘOPT(x̂,u) (46b)
∥θ∥2 ≤ 1. (46c)

We note that ck = Aθ̄(x̂k,uk) for any k ∈ Kval where ck is defined in Theorem 4.3. Let τ = ⌈γ(Nval + 1)⌉, and
A := {Aθ̄(x̂k,uk)}k∈Kval

, or equivalently, A := {ck}k∈Kval
. Due to the definition of C

(
θ̄, α

)
and that α is chosen such

that cosα = Γτ (A), the event “ΘOPT(x̂,u) ∩ C(θ̄, α) ̸= ∅” is equivalent to “Aθ̄(x̂,u) ≥ Γτ (A)”, so

P
(
ΘOPT(x̂,u) ∩ C(θ̄, α) ̸= ∅

)
= P (Aθ̄(x̂,u) ≥ Γτ (A)) . (47)

Assumption 4.5 implies that the dataset D′ = Dval ∪ {(x̂,u)} is exchangeable, i.e. the ordering of the data points in D′ does
not affect its joint probability distribution (Shafer & Vovk, 2008). Therefore, the rank (from high to low) of Aθ̄(x̂,u) in
A′ := A ∪ {Aθ̄(x̂,u)} is uniformly distributed in {1, 2, . . . , Nval + 1}. So, we have

γ ≤ P {Aθ̄(x̂,u) ≥ Γτ (A′)}
= 1− P {Aθ̄(x̂,u) < Γτ (A′)}
= 1− P {Aθ̄(x̂,u) < Γτ (A)}
= P {Aθ̄(x̂,u) ≥ Γτ (A)}

= P
{
ΘOPT(x̂,u) ∩ C(θ̄, α) ̸= ∅

}
.

The first line holds due to the definition of τ . We obtain the second line by taking the complement of the event in the first
line (inside the probability). The third line holds because Aθ̄(x̂,u) can never be strictly smaller than itself, so any elements
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in A′ that are strictly smaller than Aθ̄(x̂,u) are in A. Note that this line holds only when τ ≤ Nval, which occurs when
γ ≤ Nval/(Nval + 1), because A only has Nval elements. We obtain the third line by taking the complement of the event in
the second line (inside the probability). The last line holds due to Equation (47). We note that all the probabilities are over
the joint distribution of Dval and the new sample, i.e. D′.

We next prove that the learned uncertainty set is asymptotically exact. Let zk := (uk, x̂k), Z := {zk}k∈Kval . We define a
function class

H =
{
h(z, α) = 1

[
ΘOPT(x̂,u) ∩ C(θ̄, α)

] ∣∣∣α ∈ (0, π)
}
. (48)

Let ΠH denote the growth function of H as defined in Definition B.3. It is easy to verify that

ΠH(Nval) = Nval + 1 (49)

because the value of h(z, α) is monotonically increasing in α for any fixed z ∈ Z , so changing the value of α can only leads
to Nval + 1 different outcomes for a fixed dataset Z .

Therefore, according to Lemma B.4, we have

RNval(H) ≤

√
2 log(Nval + 1)

Nval
(50)

where RNval(H) denotes the Rademacher complexity of H when sample size is Nval, as defined in Definition B.2.

We know that the value of α is chosen such that it is the smallest value that satisfies

1

Nval

∑
k∈Kval

h(zk, α) =
1

Nval

∑
k∈Kval

1
[
ΘOPT(x̂k,uk) ∩ C(θ̄, α)

]
=

⌈γ(Nval + 1)⌉
Nval

, (51)

so we have

γ ≤ 1

Nval

∑
k∈Kval

h(zk, α) ≤ γ +
2

Nval
. (52)

The second inequality holds because

⌈γ(Nval + 1)⌉
Nval

=
⌊γNval⌋+ ⌈γNval − ⌊γNval⌋+ γ⌉

Nval
≤ γNval + ⌈γNval − ⌊γNval⌋+ γ⌉

Nval
≤ γ +

2

Nval
. (53)

Since Dval is i.i.d. sampled, for any fixed α,
∑

k∈Kval
h(zk, α)/Nval provides a sample average approximation to E [h(z, α)],

which can be interpreted as P
(
ΘOPT(x̂,u) ∩ C(θ̄, α)

)
for any new sample (θ̂,u) from Pθ̂,u and x̂ = x̃(θ̂,u).

By applying Lemma B.5, we have, with probability at least δ = 1− 1/Nval,∣∣∣∣∣ 1

Nval

∑
k∈Kval

h(zk, α)− E [h(z, α)]

∣∣∣∣∣ ≤ 2RNval(H) +

√
2 logNval

Nval
. (54)

By combing (50)–(54), we have, with probability at least 1− 1/Nval,

∣∣∣P(
ΘOPT(x̂,u) ∩ C(θ̄, α)

)
− γ

∣∣∣ ≤
√

8 log(Nval + 1) + 2 logNval

Nval
+

2

Nval
. (55)
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B.5. Proof of Theorem 4.11

Proof. We first bound the perceived optimality gap of a sampled DM. Let (θ̂,u) be a sample from P(θ,u), x̂ = x̃(θ̂,u),
θ̂CIO(u) denote the optimal solution to the inner maximization problem in RFO

(
C(θ̄, α1),u

)
when the outer decision

variable is set to x̂, θ̄CIO(u) denote the optimal solution to the inner maximization problem in RFO
(
C(θ̄, α1),u

)
when the

outer decision variable is set to x̄CIO(u), If ΘOPT (x̂,u) ∩ C(θ̄, α1) ̸= ∅, let θ̃ be an element of ΘOPT (x̂,u) ∩ C(θ̄, α1),
we have

f
(
θ̂, x̄CIO(u)

)
− f

(
θ̂, x̂

)
≤ f

(
θ̃, x̄CIO(u)

)
− f

(
θ̃, x̂

)
+ [ν(x̂) + ν (x̄CIO(u))]

∥∥∥θ̂ − θ̃
∥∥∥
2

≤ f
(
θ̃, x̄CIO(u)

)
− f

(
θ̃, x̂

)
+ η [ν(x̂) + ν (x̄CIO(u))]

≤ f
(
θ̄CIO(u), x̄CIO(u)

)
− f

(
θ̃, x̂

)
+ η [ν(x̂) + ν (x̄CIO(u))]

≤ f
(
θ̂CIO(u), x̂

)
− f

(
θ̃, x̂

)
+ η [ν(x̂) + ν (x̄CIO(u))]

≤ ν(x̂)
∥∥∥θ̂CIO(u)− θ̃

∥∥∥
2
+ η [ν(x̂) + ν (x̄CIO(u))]

≤ 2ν(x̂)(1− cos 2α1) + η (ν(x̂) + ν [x̄CIO(u)])

= ν(x̂)(η − 2 cos 2α1 + 2) + ην [x̄CIO(u)] .

The first line holds due to Assumption 4.7. The second line holds due to assumption 4.8. The third line holds due to the
definition of θ̄CIO(u). The fourth line holds because

(
x̄CIO(u), θ̄CIO(u)

)
is an optimal solution to RFO

(
C(θ̄, α1),u

)
.

The fifth line holds due to Assumption 4.7. The sixth line holds because both θ̂CIO(u) and θ̃ are in C(θ̄, α1) so the angle
between them is no larger than 2α1. Since both θ̂CIO(u) and θ̃ are on the unit sphere, the L2 distance between them are
bounded by 2(1− cos 2α1).

Since α1 is chosen such that P
(
ΘOPT (x̂,u) ∩ C(θ̄, α1)

)
= 1, we have

POG(x̄CIO) = E
[
f
(
θ̂, x̄CIO(u)

)
− f

(
θ̂, x̂

)]
≤ E {ν(x̂)(η − 2 cos 2α1 + 2) + ην [x̄CIO(u)]}
= µ(η − 2 cos 2α1 + 2) + ηµCIO

where µ := E [ν(x̂)] and µCIO := E (ν [x̄CIO(u)]).

B.6. Proof of Corollary 4.12

Proof. We first derive an upper bound on the optimality gap of the suggested decision x̄CIO(u) as evaluated using θ∗ for
any u ∈ U . Let (θ̂,u) be a sample from P(θ,u), x̂ = x̃(θ̂,u), and θ̃ be an element of ΘOPT (x̂,u) ∩ C(θ̄, α1), which is

non-empty almost surely because α1 is chosen such that P
(
ΘOPT (x̂,u) ∩ C(θ̄, α1)

)
= 1. Let θ̄CIO(u) denote the optimal

solution to the inner maximization problem in RFO
(
C(θ̄, α1),u

)
when the outer decision variable is set to x̄CIO(u).

For any u ∈ U , let x∗(u) := x̃(θ∗,u) and θ∗
CIO(u) denote the optimal solution to the inner maximization problem in
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RFO
(
C(θ̄, α1),u

)
when the outer decision variable is set to x∗(u), we have

f (θ∗, x̄CIO(u))− f (θ∗,x∗(u)) ≤ f
(
E(θ̂), x̄CIO(u)

)
− f

(
E(θ̂),x∗(u)

)
+ (ν [x̄CIO(u)] + ν [x∗(u)]) ∥θ∗ − E(θ̂)∥2

≤ f
(
E(θ̂), x̄CIO(u)

)
− f

(
E(θ̂),x∗(u)

)
+ σ (ν [x̄CIO(u)] + ν [x∗(u)])

= E
[
f
(
θ̂, x̄CIO(u)

)
− f

(
θ̂,x∗(u)

)]
+ σ (ν [x̄CIO(u)] + ν (x∗(u)))

≤ E
[
f
(
θ̃, x̄CIO(u)

)
− f

(
θ̃,x∗(u)

)
+ (ν [x̄CIO(u)] + ν [x̂])∥θ̂ − θ̃∥2

]
+ σ (ν [x̄CIO(u)] + ν (x∗(u)))

≤ E
[
f
(
θ̃, x̄CIO(u)

)
− f

(
θ̃,x∗(u)

)
+ (ν [x̄CIO(u)] + ν [x̂])η

]
+ σ (ν [x̄CIO(u)] + ν (x∗(u)))

≤ E
[
f
(
θ̄CIO(u), x̄CIO(u)

)
− f

(
θ̃,x∗(u)

)]
+ (η + σ) (ν [x̄CIO(u)] + ν (x∗(u)))

≤ E
[
f (θ∗

CIO(u),x
∗(u))− f

(
θ̃,x∗(u)

)]
+ (η + σ) (ν [x̄CIO(u)] + ν (x∗(u)))

≤ E
[
ν(x∗(u))∥θ∗

CIO(u)− θ̃∥2
]
+ (η + σ) (ν [x̄CIO(u)] + ν (x∗(u)))

≤ 2ν (x∗(u)) (1− cos 2α1) + (η + σ) (ν [x̄CIO(u)] + ν (x∗(u)))

≤ (2− 2 cos 2α1 + η + σ)ν (x∗(u)) + (η + σ)ν [x̄CIO(u)]

The first line holds because of Assumptions 4.7. The second line holds due to Assumption 4.10. The third line holds
because f is linear in θ. The expectation is taken over Pθ. The fourth line holds due to Assumption 4.7. The fifth line
holds due to Assumption 4.8. The sixth line holds because of the definition of θ̄CIO(u). The seventh line holds because(
x̄CIO(u), θ̄CIO(u)

)
is an optimal solution to RFO

(
C(θ̄, α1),u

)
. The eigth line holds due to Assumption 4.7. The ninth

line holds since both θ∗
CIO(u) and θ̃ are on the unit sphere and the angle between them is no greater than 2α1, then the L2

distance between them is upper bounded by 2(1− cos 2α1).

Next, we bound the AOG of x̄CIO. We have

AOG(x̄CIO) = E [f (θ∗, x̄CIO(u))− f (θ∗,x∗(u))]

≤ E [(2− 2 cos 2α1 + η + σ)ν (x∗(u)) + (η + σ)ν [x̄CIO(u)]]

= (2− 2 cos 2α1 + η + σ)µ∗ + (η + σ)µCIO

where µ∗ := E (ν[x∗(u)]).

C. Numerical Experiment Details
C.1. Computational Setup

All the algorithms are implemented and test using Python 3.9.1 on a MacBook Pro with an Apple M1 Pro processor and 16
GB of RAM. Optimization models are implemented with Gurobi 9.5.2.

C.2. Forward Problem

C.2.1. SHORTEST-PATH

Let E+(i) and E−(i) denote the sets of edges that enter and leave node i ∈ N , respectively. Let uo and ud denote the origin
and destination of the trip, respectively. We define xij ∈ E as binary decision variables that take 1 if road (i, j) is traversed
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for any (i, j) ∈ E . The shortest path problem is presented as follows.

minimize
x

∑
(i,j)∈E

θijxij (56a)

subject to
∑

(j,i)∈E+(i)

xji −
∑

(i,j)∈E−(i)

xij =


1, if i = ud

−1, if i = od

0, otherwise
, ∀i ∈ N (56b)

xij ∈ {0, 1}, (i, j) ∈ E . (56c)

The objective function minimizes the total travel cost. The first set of constraints are the flow-balancing constraints that
make sure we can find a path from uo to ud. The second set of constraints specify the range of our decision variables. Note
that the constriant matrix is totally unimodular, so we can replace the binary constraints with 0 ≤ xij ≤ 1 for any (i, j) ∈ E
when implementing this model.

C.2.2. KNAPSACK

We define binary decision variables xi that indicate if item i ∈ [d] is selected (= 1) or not (= 0). The knapsack problem is
presented as follows.

maximize
x

∑
i∈[d]

θixi (57a)

subject to
∑
i∈[d]

wixi ≤ u (57b)

xi ∈ {0, 1},∀i ∈ [d]. (57c)

The objective maximizes the total value of the selected items. The first constraint enforces a total budget for item selection.
The second set of constraints specify the range of our decision variables.

C.3. Solving the Data-driven Inverse Optimization Problem

For all problem instances, we solve the following inverse problem to obtain a point estimation of parameters.

minimize
θ∈R|E|,ϵ∈Rntrain

+

1

Ntrain

∑
k∈Ktrain

lk (58a)

subject to lk ≥ θ⊺x̂k − θ⊺x, ∀x ∈ Xk, k ∈ Ktrain (58b)

∥θ − 1∥1 ≤ |E|
4
. (58c)

This problem is initialized without Constraints (58b), which were added iteratively using a cutting-plane method. Specifically,
in each iteration, after solving Problem (58), let θ′ and {l′k}k∈Ktrain be the optimal solution. For each data point k ∈ Ktrain,
we solve the following sub-problem

minimize
xk∈X (uk)

θ′⊺xk. (59)

Let x′
k be the optimal solution to the sub-problem. If l′k < θ′⊺x̂k − θ′⊺x′

k, we add the following cut to Problem (58)

lk ≥ θ⊺x̂k − θ⊺x′
k. (60)

We keep running this procedure until no cut is added to the master Problem (58).
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C.4. Solving the Calibration Problem

C.4.1. SHORTEST PATH

For each data point in the validation set, we calculate the value of ck by solving the following problem

maximize
θ∈R|E|,w∈RN ,v∈R|E|

+

θ̄
⊺
θ (61a)

subject to wdk
− wok −

∑
(i,j)∈E

vij = θ⊺x̂k (61b)

wj − wi − vij ≤ cij , ∀(i, j) ∈ E (61c)
∥θ∥2 ≤ 1. (61d)

where w ∈ RN and v ∈ R|E|
+ , respectively, denote the dual variables associated with the flow-balancing constraints and the

capacity constraints in the primal problem. The first constraint enforces strong duality. The second set of constraints are the
dual feasibility constraints. The last constraint ensures the optimal solution is on the unit sphere. Note that we do not need
to enforce ∥θ∥2 = 1 because this is a maximization problem.

C.4.2. KNAPSACK

For each data point in the validation set, we calculate the value of ck by solving the following calibration problem

maximize
θ∈Rd

θ̄
⊺
θ (62a)

subject to θ⊺x̂k ≥ θ⊺x, ∀x ∈ X (uk) (62b)
∥θ∥2 ≤ 1. (62c)

We initialize this problem without Constraints (62b). In each iteration, after solving the calibration problem, let θ′ denote
the optimal solution. We solve FO(θ′,uk) and let x′ denote the optimal solution. If θ′⊺x′ > θ′⊺x̂k, we then add the
corresponding cut to the model. We keep running this process until no cut is added.

C.5. Solving the Robust Forward Problem

Let α = cos−1 (Γk({ck}k∈Kval)). We next solve the following robust model to recommend a new decision to prescribe a
decision given a u ∈ U .

minimize
x∈X (u)

maximize
θ∈R|E|

θ⊺x (63a)

subject to θ̄
⊺
θ ≥ cos(α) (63b)

∥θ∥2 ≤ 1. (63c)

We initialize this problem as follows.

minimize
x∈X (u),Ω∈R+

Ω (64a)

subject to θ⊺x ≤ Ω, ∀θ ∈ Θ̃. (64b)

We initialize Θ̃ = ∅. We first solve Problem (64), let x′ and Ω′ denote the optimal solution. Then we solve the following
sub-problem

maximize
θ∈R|E|

θ⊺x′ (65a)

subject to θ̄
⊺
θ ≥ cos(α) (65b)

∥θ∥2 ≤ 1. (65c)

Let θ′ denote the optimal solution to the sub-problem. If θ⊺x′ > Ω′, then we add θ′ to Θ̃ and re-solve Problem (64). We
keep running this procedure until no new solution is added to Θ̃.

21


