
AutoLTS: Automating Cycling Stress Assessment via Contrastive Learning and
Spatial Post-processing

Bo Lin1, Shoshanna Saxe2, Timothy C. Y. Chan1

1Department of Mechanical and Industrial Engineering, University of Toronto
2Department of Civil and Mineral Engineering, University of Toronto

{blin, tcychan}@mie.utoronto.ca, s.saxe@utoronto.ca

Abstract
Cycling stress assessment, which quantifies cyclists’ per-
ceived stress imposed by the built environment and motor
traffics, increasingly informs cycling infrastructure planning
and cycling route recommendation. However, currently cal-
culating cycling stress is slow and data-intensive, which hin-
ders its broader application. In this paper, We propose a deep
learning framework to support accurate, fast, and large-scale
cycling stress assessments for urban road networks based
on street-view images. Our framework features i) a con-
trastive learning approach that leverages the ordinal relation-
ship among cycling stress labels, and ii) a post-processing
technique that enforces spatial smoothness into our predic-
tions. On a dataset of 39,153 road segments collected in
Toronto, Canada, our results demonstrate the effectiveness
of our deep learning framework and the value of using im-
age data for cycling stress assessment in the absence of high-
quality road geometry and motor traffic data.

1 Introduction
Safety and comfort concerns have been repeatedly identi-
fied as major factors that inhibit cycling uptake in cities
around the world. A range of metrics, such as the level of
traffic stress (LTS) (Furth, Mekuria, and Nixon 2016; Huer-
tas et al. 2020) and bicycle level of service index (Callister
and Lowry 2013), have been proposed to quantify cyclists’
perceived stress imposed by the built environment and mo-
tor traffic. These metrics are predictive of cycling behav-
iors (Imani, Miller, and Saxe 2019; Wang et al. 2020) and
accidents (Chen et al. 2017), and thus have been applied
to support cycling infrastructure planning (Lowry, Furth,
and Hadden-Loh 2016; Gehrke et al. 2020; Chan, Lin, and
Saxe 2022) and route recommendation (Chen et al. 2017;
Castells-Graells, Salahub, and Pournaras 2020). However,
calculating these metrics typically requires high-resolution
road network data, such as motor traffic speed, the locations
of on-street parking, and the presence/type of cycling infras-
tructure on each road segment. The practical challenge of
collecting accurate and up-to-date data hinders the broader
application of cycling stress assessment and tools built on it.

To tackle this challenge, we propose AutoLTS, a deep
learning framework for assessing cycling stress of urban
road networks based on street-view images. AutoLTS can
facilitate timely, accurate, and large-scale assessments of cy-
cling stress because up-to-date street-view images are easy

(a) LTS1 (b) LTS2

(c) LTS3 (d) LTS4

Figure 1: Example images with the four LTS labels: LTS1
roads are safe for all cyclists including children, LTS2 roads
are for most adults, LTS3 and LTS4 are for “enthused and
confident” and “strong and fearless” cyclists, respectively.

to access via the Google StreetView API. Using a dataset of
39,153 road segments collected in Toronto, Canada, we fo-
cus on automating the calculation of the LTS metric. Specifi-
cally, as shown in Figure 1, road segments are classified into
four classes, i.e., LTS 1, 2, 3 and 4 (Dill and McNeil 2016),
corresponding to the cycling suitability of four types of cy-
clists, where LTS 1 is the least stressful road and LTS 4 is
the most stressful. This metric has been applied to investi-
gate the connectivity (Lowry, Furth, and Hadden-Loh 2016;
Kent and Karner 2019) and equity (Tucker and Manaugh
2018) of urban cycling networks and to evaluate cycling in-
terventions during the COVID-19 pandemic (Lin, Chan, and
Saxe 2021). While we focus on LTS for demonstration, our
approach applies to any cycling stress metric.

Formulating this task as a simple image classification



Figure 2: An overview of AutoLTS. The input image is encoded to an image embedding and is used to predict missing road
features. The image encoder is trained using a contrastive learning approach (Section 3.2). The predicted road features go
through a post-processing module (Section 3.3) that enforces spatial smoothness into the predictions. Finally, a feedforward
network predicts the the image’s LTS label based on the image embedding, and the predicted and available road features.

problem may not utilize the training dataset to its full poten-
tial because it ignores i) the causal relationship between road
features and LTS, ii) the ordinal relationships among LTS la-
bels, and iii) the spatial structure of urban road networks. It
is critical to leverage i)–iii) to improve the prediction perfor-
mance as our dataset, limited by the practical data collection
challenge and the number of road segments in a city, is rela-
tively small for a computer vision task. Item ii) is of particu-
lar importance as misclassifications between different pairs
of LTS labels carry different empirical meanings. For exam-
ple, predicting an LTS1 road as LTS3 is considered worse
than predicting it as LTS2 because LTS2 corresponds to the
cycling stress tolerance of most adults (Furth, Mekuria, and
Nixon 2016). The former may lead to redundant cycling in-
frastructure on a low-stress road and or recommended cy-
cling routes that exceed most adults’ stress tolerance.

As illustrated in Figure 2, to capture i), we formulate the
LTS assessment as a two-step learning task. We first predict
LTS related road features based on the input image and learn
high-quality representations of the image. We then combine
the image embedding with the predicted and available road
features to produce the final LTS prediction. This two-step
framework allows us to capture ii) and iii) via contrastive
learning and a spatial post-processing technique, respec-
tively. Specifically, to address ii), we propose a contrastive
learning approach to learn an image embedding space where
images are clustered based on their LTS labels, and where
these clusters are positioned according to the ordinal rela-
tionship among these labels. To tackle iii), we develop a
post-processing technique to enforce spatial smoothness into
road feature predictions. We opt not to directly enforce spa-
tial smoothness into LTS predictions because it may smooth
over important local patterns, which are critical for down-
stream applications such as cycling network design that aims
to fix the disconnections between low-stress sub-networks.
Our contributions are summarized below.

1. A novel application. We introduce the first dataset and
the first computer vision framework for automating cy-
cling stress assessment.

2. New methodologies. We propose a new contrastive loss
for ordinal classification that generalizes the supervised
contrastive loss (Khosla et al. 2020). We develop a post-
processing technique that adjusts the road feature pre-
dictions considering the spatial structure of the road net-
work. Both can be easily generalized to other tasks.

3. Strong performance. Through comprehensive experi-
ments using a dataset collected in Toronto, Canada, we
demonstrate i) the value of street-view images for cy-
cling stress assessment, and ii) the effectiveness of our
approach in a wide range of real-world settings.

2 Literature Review
Computer vision for predicting urban perceptions.
Street view images have been used to assess the perceived
safety, wealth, and uniqueness of neighborhoods (Salesses,
Schechtner, and Hidalgo 2013; Arietta et al. 2014; Naik
et al. 2014; Ordonez and Berg 2014; Dubey et al. 2016)
and to predict neighborhood attributes such as crime rate,
housing price, and voting preferences (Arietta et al. 2014;
Gebru et al. 2017). We contribute to this stream of litera-
ture by i) proposing the first dataset and the deep-learning
framework for assessing cycling stress, and ii) developing
the first post-processing technique to enforce spatial smooth-
ness in model predictions. Our proposal of automating cy-
cling stress assessment via a computer vision approach is
similar to the work of (Ito and Biljecki 2021) who use pre-
trained image segmentation and object detection models to
extract road features and then construct a bike-ability index
based on them. In contrast, we focus on automating the cal-
culation of a cycling stress metric that is well-validated in
the transportation literature. The approach proposed by (Ito



and Biljecki 2021) does not apply because many LTS-related
road features are i) unlabeled in the dataset on which the
segmentation and object detection models were trained (e.g.
road and cycling infrastructure types) or ii) not observable
in street-view images (e.g. motor traffic speed).

Contrastive learning. Contrastive learning, which learns
data representations by contrasting similar and dissimilar
data samples, has received growing attention in computer
vision. Such techniques usually leverage a contrastive loss
to guide the data encoder to pull together similar samples
in an embedding space, which has been shown to facilitate
downstream learning in many applications (Zhao et al. 2021;
Bengar et al. 2021; Bjorck et al. 2021), especially when data
labels are unavailable or scarce. To date, most contrastive
learning approaches are designed in unsupervised settings
(Gutmann and Hyvärinen 2010; Sohn 2016; Oord, Li, and
Vinyals 2018; Hjelm et al. 2018; Wu et al. 2018; Bachman,
Hjelm, and Buchwalter 2019; He et al. 2020; Chen et al.
2020). They typically generate “similar” data by applying
random augmentations to unlabeled data samples. More re-
cently, Khosla et al. (2020) apply contrastive learning in a
supervised setting where they define “similar” data as data
samples that share the same image label. Linear classifiers
trained on the learned embeddings outperform image clas-
sifiers trained directly based on images. We extend the su-
pervised contrastive loss (Khosla et al. 2020) by augment-
ing it with terms that measure the similarity of images with
“neighboring” labels. Consequently, the relative positions of
the learned embeddings reflect the similarity between their
class labels, which helps to improve our model performance.

3 Method
3.1 Data Collection and Pre-processing
Training and testing our model requires three datasets:
i) road network topology, ii) ground-truth LTS labels for
all road segments, and iii) street-view images that clearly
present the road segments. We collect all the data in Toronto,
Canada via a collaboration with the City of Toronto. Data
sources and pre-processing steps are summarized below.

Road network topology: We retrieve the centerline road
network from City of Toronto (2020). Geospatial coordi-
nates of both ends of each road segment are presented. We
exclude roads where cycling is legally prohibited, e.g., ex-
pressways. The final network has 59,554 road segments.

LTS label. The LTS calculation requires detailed road
network data. For each road segment in Toronto, we col-
lect road features as summarized in Table 1 and calculate its
LTS label following Furth, Mekuria, and Nixon (2016) and
Imani, Miller, and Saxe (2019) (detailed in Appendix B).

Street-view image. We collect street-view images using
the Google StreetView API. We opt not to collect images
for road segments that are shorter than 50 meters because
a significant portion of those images typically present adja-
cent road segments that may have different LTS labels. For
each of the remaining road segments, we collect one image
using the geospatial coordinate of its mid-point. We manu-
ally examine the collected images to ensure that they clearly
present the associated road segments. If an image fails the

human screening, we manually recollect the image when
possible. Images are missing for roads where driving is pro-
hibited, such as trails and narrow local passageways.

Feature Source

Road type (City of Toronto 2020)
Road direction (City of Toronto 2020)
Number of lanes (Government of Canada 2020)
Motor traffic speed (Travel Modelling Group 2016)
Cycling infrastructure location (City of Toronto 2020)
On-street parking location (Toronto Parking Authority 2020)

Table 1: Summary of LTS-related road features.

Our final image dataset consists of 39,153 high-quality
street-view images, with 49.0%, 34.5%, 6.9%, and 9.7% of
them labeled as LTS 1, 2, 3 and 4, respectively.

3.2 Supervised Contrastive Learning for Ordinal
Classification

We propose a contrastive learning approach to train the
image encoder. The novelty lies in the development of a
new contrastive loss that considers the ordinal relationship
among LTS labels. We adopt a contrastive learning frame-
work (Figure 3) similar to MoCo (He et al. 2020) to train
the image encoder f on a pretext task where the encoder
learns to pull together “similar” images in the embedding
space. Given a batch of n road segments indexed by N , let
xi and yi denote the street view image and the label of seg-
ment i ∈ N , respectively. We assume yi ∈ [m] are dis-
crete and ordered for all i ∈ N . We create l virtual labels
(y1i , y

2
i , . . . , y

l
i) for each image xi where yui = dyi/ue for all

u ∈ [l]. In words, these virtual labels are created by group-
ing the “neighboring” real labels at different granularities.
Consequently, images with “similar” real labels have more
overlapping virtual labels. We create two views x̄i and x̃i of
each image xi by applying a random augmentation module
twice. We create a momentum encoder g that has the same
structure as f and whose parameters are updated using the
momentum update function (He et al. 2020) as we train f .
The image views {x̄i}i∈[n] and {x̃k}k∈K are encoded by
f and g, respectively, where K is a fixed-length queue that
stores previously generated image views. Let z̄i = f(x̄i)
and z̃i = g(x̃i) denote the embedding generated by these
two encoders. During training, these embeddings are further
fed into a projection layer, which is discarded during infer-
ence following Khosla et al. (2020) and Chen et al. (2020).
The encoder network f is trained to minimize the following
loss that applies to the projected embeddings:

Lord = − 1

N

∑
i∈N

∑
u∈[l]

wu

|Ku
i |
∑
j∈Ku

i

log
exp [p(z̄i)

ᵀp(z̃j)/τ ]∑
k∈K exp [p(z̄i)ᵀp(z̃k)/τ ]

.

(1)
where Ku

i = {k ∈ K : yui = yuk} for all u ∈ [l], wu is a
constant weight assigned to the uth virtual label, τ is a tem-
perature hyper-parameter, and p is the projection function.



Figure 3: The contrastive learning framework and the learned image embeddings from different contrastive losses. MoCo
indicates the self-supervised contrastive loss, SupCon indicates the supervised contrastive loss, and OrdCon indicates our con-
trastive loss. All the embeddings are projected to a two-dimensional space via T-SNE (Hinton and Roweis 2002). Each point
corresponds to one street-view image and is color-coded according to the associated LTS label.

Comparison to other loss functions. Compared to
MoCo (He et al. 2020), our OrdCon takes advantage of la-
bel information. Consequently, as illustrated in Figure 3, our
image embeddings form clusters that correspond to their im-
age labels. Compared to the SupCon (Khosla et al. 2020),
our OrdCon considers the ordinal relationship among image
labels by aggregating the real label at different granularities.
As a result, the relative positions of our embedding clusters
reflect the similarity between their corresponding labels. Or-
dCon recovers the SupCon when l = 1 and w1 = 1.

3.3 Spatial Post-processing for Road Feature
Predictions

Several LTS-related road features, e.g., motor traffic speed,
have strong spatial correlations, meaning that the values
associated with adjacent road segments are highly corre-
lated. Such structure can be useful in regulating road fea-
ture predictions, which may lead to improved LTS predic-
tions. However, it is often not obvious how spatial smooth-
ness should be enforced. For example, consider a case where
the motor traffic speeds of five consecutive road segments
are predicted as 60, 40, 60, 40, and 60 km/h, respectively. It
is likely that two of them are wrong, yet it is unclear if we
should change the 40s to 60 or 60s to 40. In this section, we
propose a principled way to address this problem.

A Causal Model We start by introducing a directed arc
graph (DAG) (illustrated in Figure 4) that describes the rela-
tionships between the inputs xi (i.e., street view images) and
targets ai ∈ A (i.e., the road feature of interest) of our road-
feature prediction module (illustrated in Figure 2). We as-
sumeA to be discrete. This is not restrictive because contin-
uous road features can be categorized according to the LTS
calculation scheme (detailed in Appendix C). Let I denote
the set of edges in the road network and J (i) ⊂ I denote
the set of road segments that are adjacent to road segment
i ∈ I. We make three assumptions as listed below.

1. For any i ∈ I and k ∈ I\J (i), ai and ak are condition-
ally independent given {aj}j∈J (i).

2. For any i, j ∈ I and j 6= i, xi and aj are conditionally
independent given ai.

3. For any i ∈ I and j, k ∈ J (i) and j 6= k, aj and ak are
conditionally independent given ai.

Figure 4: A causal model for road feature predictions. The
blue lines indicate real-world road segments, black arrows
represent causal impacts.

The first and second assumptions state that the target ai is
directly influenced only by the input of the same road seg-
ment xi and the targets of its adjacent segments {aj}j∈J (i).
The third assumption states that when target ai is known,
its impacts on its adjacent targets {aj}j∈J (i) are indepen-
dent. This model naturally applies to several LTS-related
road features. For example, the traffic speed on a road seg-
ment is affected by the built environment observable from
its street-view image (xi) and the traffic speeds on its adja-
cent road segments ({aj}j∈J (i)). The built environment and
traffic speeds on other road segments may present indirect
impacts on the road segment of interest, but such impacts
must transmit through its adjacent road segments. Addition-
ally, the impacts of the traffic speed on a road segment on the
speeds of its adjacent road segments can be viewed as inde-
pendent (or weakly dependent) because they usually corre-
spond to motor traffics along different directions.

Enforcing Spatial Smoothness Given the DAG, tar-
get predictions can be jointly determined by maximizing
the joint probability of all targets given all inputs, i.e.,
maximizeaP ({ai}i∈I |{xi}i∈I). However, evaluating the
joint distribution of {ai}i∈I is non-trivial because our DAG
is cyclic. Instead, we look into determining the target of one
road segment at a time assuming all other targets are fixed.



Proposition 1. Under assumptions 1–3, for any i ∈ I,

P (ai|{xi}i∈I , {aj}j 6=i∈I) ∝
∏

j∈J (i)

P (aj |ai)P (ai|xi)

(2)

Proposition 1 decomposes the conditional probability of
target ai given all other targets and inputs. The transition
probability P (aj |ai) can be estimated from our training
data, and P (ai|xi) can be produced by our deep learning
model. The proof is presented in Appendix A. Inspired by
Proposition 1, we next introduce an algorithm that itera-
tively updates the target predictions in the whole network
until there are no further changes. The algorithm is summa-
rized in Algorithm 1.

Algorithm 1: An iterative target adaptation algorithm
Input: Initial predictions {ai}i∈I ; Transition Probabilities
{P (a|a′)}a,a′∈A; Model Predictions {P (ai|xi)}i∈I ; Adja-
cent sets J (i) for any i ∈ I.
Output: Updated predictions {ŷi}i∈I .

1: repeat
2: set âi ← ai for all i ∈ I.
3: for i ∈ I do
4: set ai ← arg maxa∈A

∏
j∈J (i) P (âj |a)P (a|xi)

5: until âi = ai for all i ∈ I

4 Empirical Results
4.1 Experiment Setup
Evaluation scenarios. We evaluate AutoLTS and baseline
methods in three data-availability scenarios, each under four
train-test-validation splits, totaling 12 sets of experiments.

For data availability, we consider LTS based on
1. Street view image
2. Street view image, road and cycling infrastructure types
3. Street view image, number of lanes, and speed limit.
The design of these scenarios is informed by the real data
collection challenges we encountered in Toronto. The num-
ber of lanes and the speed limit of each road segment are
accessed via Open Data Canada (Government of Canada
2020). Road type and the location of cycling infrastructure
are available via Open Data Toronto (City of Toronto 2020).
However, as the two data platforms use different base maps,
combining data from these two sources requires consider-
able manual effort, echoing the data collection challenges in
many other cities.

For the train-test-validation split, we consider
1. A random 70/15/15 train-test-validation split across all

road segments in Toronto.
2. Three spatial splits, which use road segments in an

area as the test set and performs a random 80/20 train-
validation split for other road segments. As shown in
Figure 5, we consider using road segments in three
of Toronto’s amalgamated cities, York, Etobicoke, and

Scarborough as the test sets. These three areas have very
different LTS distributions, which allows us to exam the
generalization ability of AutoLTS in real-world settings.

The random split mimics the situation where we use Au-
toLTS to extrapolate manual LTS assessment or to update
the LTS assessment in the city where the model is trained.
The spatial split mimics the situation where we apply Au-
toLTS trained in one city to an unseen city.

Evaluation Metrics.
• LTS Prediction Accuracy

Acc =
1

Ntest

Ntest∑
i=1

1[yi = ŷi]. (3)

• High/Low-Stress Prediction Accuracy

HLA =
1

Ntest

Ntest∑
i=1

1[h(yi) = h(ŷi)] (4)

where h is a function that takes a value of 1 if the input
LTS label is low-stress (LTS1/2) and takes 0 if the LTS
label is high-stress (LTS3/4).

• Average False High/Low-Stress Rate

AFR =
1

2

{∑Ntest
i=1 1[h(ŷi) = 1]

nltest
+

∑Ntest
i=1 1[h(ŷi) = 0]

nhtest

}
(5)

where nltest and nhtest denote, respectively, the numbers of
test road segments that are low- and high-stress.

Acc and HLA measure the overall prediction performance,
while AFR considers the fact that the dataset is imbalanced
with a higher portion being low-stress. Ideally, we want a
model that achieves high Acc and HLA and low AFR.

Baselines. To demonstrate the value of image data, in sce-
narios where road features are available, we use a classifi-
cation and regression tree (CART) that predicts LTS based
on available road features as a baseline. CART is selected
because the LTS calculation scheme (Furth, Mekuria, and
Nixon 2016) can be summarized by a decision tree. We
also compare AutoLTS with image-based supervised and
contrastive learning methods. For supervised learning, we
consider Res-50 (He et al. 2016) trained using the cross-
entropy loss. For contrastive learning, we consider super-
vised contrastive learning (MoCo) (He et al. 2020) and
self-supervised contrastive learning (SupCon) (Khosla et al.
2020), both implemented with the MoCo trick (He et al.
2020). Baselines are detailed in Appendix E.

Model details. We use ResNet-50 (He et al. 2016) as the
image encoder. The normalized ReLU activations of the final
pooling layer are used as the image embedding (ξ=2,048).
We follow He et al. (2020) to set τ = 0.07 and use the
SimCLR augmentation (Chen et al. 2020) for training. We
train one ResNet-50 to predict each missing road feature.
All road features are discretized using the thresholds de-
fined in the LTS calculation scheme (Furth, Mekuria, and
Nixon 2016) (Appendix C). In the LTS prediction module,
we first train a CART model to predict a road segment’s LTS



Figure 5: Illustration of the three spatial splits. York has a similar LTS distribution as the overall city-wide distribution. Etobi-
coke has the majority of the road segments being LTS2 and more roads being LTS4 compared to the city’s average. Scarborough
has an even higher LTS4 percentage.

Random
(Ntest = 5,873)

York
(Ntest = 2,091)

Etobicoke
(Ntest = 6,667)

Scarborough
(Ntest = 8,921)

Sce. Method Acc HLA AFR Acc HLA AFR Acc HLA AFR Acc HLA AFR

1

Cross-Entropy 70.49 93.51 10.19 60.97 93.40 12.09 64.20 92.89 9.37 64.28 93.87 12.61
MoCo 61.69 90.23 14.68 57.68 91.34 17.17 52.03 89.89 12.71 56.16 91.45 17.01
SupCon 70.75 93.41 11.73 61.17 93.40 17.05 64.29 93.19 9.29 65.73 93.38 10.96
AutoLTS 73.41 94.16 10.50 62.31 94.69 15.72 64.69 93.50 9.87 66.04 94.62 10.77

2

CART 56.21 96.87 5.21 43.33 96.75 4.51 35.35 96.73 7.25 50.22 96.40 8.34
Cross-Entropy 75.07 96.82 5.91 63.37 96.37 5.26 66.21 95.97 6.55 67.76 95.74 10.14
MoCo 68.94 96.65 14.41 57.39 96.22 4.81 59.11 95.79 9.08 62.09 96.31 8.66
SupCon 74.89 96.42 6.33 64.13 96.17 5.54 65.70 95.68 9.14 68.55 96.19 8.66
AutoLTS 75.86 96.22 7.02 65.04 96.13 8.77 67.74 96.20 7.37 68.86 96.51 7.78

3

CART 89.41 96.07 10.08 88.81 97.57 6.97 90.67 95.46 10.37 91.90 94.90 12.51
Cross-Entropy 90.26 95.33 8.97 88.12 97.37 6.47 91.01 95.34 7.79 91.45 95.54 12.88
MoCo 89.82 95.37 11.25 86.90 98.61 3.63 90.88 96.35 6.78 92.74 94.91 12.79
SupCon 91.20 96.19 11.30 87.42 96.70 4.18 89.04 95.93 7.69 92.41 95.11 11.50
AutoLTS 91.65 96.70 5.87 89.24 97.23 4.78 92.61 96.68 4.77 94.50 97.28 5.81

Table 2: The out-of-sample performance of AutoLTS and baselines. The three blocks (top to bottom) correspond to data-
availability scenarios 1, 2, and 3, respectively (Section 4.1). The four groups of columns (left to right) correspond to the train-
test-validation splits defined in Section 4.1. Numbers in boldface are cases where our approach achieves the best performance.

based on its predicted and available road features. We then
use the LTS distribution in the leaf node that a road seg-
ment is assigned to as its road feature embedding, which is
mapped to a ξ-dimensional space via a linear layer and av-
eraged with the image embedding. Finally, a linear classifier
predicts the road segment’s LTS based on the averaged em-
bedding. Training details are summarized in Appendix D.

4.2 Main Results
The performance of AutoLTS and baselines are shown in
Table 2. We summarize our findings below.

The value of image data for cycling stress assessment.
AutoLTS achieves LTS prediction accuracy of 62.31%–
73.41% and high/low-stress accuracy of 93.50%–94.69%
only using street-view images. Such a model can be use-
ful for cycling infrastructure planning and route recommen-
dation tools that do not require the granularity of four LTS
categories and focus solely on the difference between high-

(LTS3/4) and low-stress (LTS1/2) road segments. In data-
availability scenarios where partial road features are avail-
able (scenarios two and three), incorporating street-view im-
ages leads to increases of 0.43–32.39 percentage points in
Acc with little to no increases in AFR. The improvements
are particularly large in scenario two where the average in-
crease in Acc due to the usage of street-view images is 23.10
percentage points across all train-test-validation splits con-
sidered. By combining street-view images with the speed
limit and the number of lanes (scenario 3), the Acc is over
90% under all splits. These numbers demonstrate that street
view images are valuable for cycling stress assessment with
and without partial road features.

The performance of AutoLTS and other image-based
methods. Overall, AutoLTS achieves the highest Acc, which
is of primary interest, in all evaluation scenarios. Due to
the limited sample size, unsupervised contrastive learning
(MoCo) generally falls around 10% behind SupCon. Sup-



Random
(Ntest = 5,873)

York
(Ntest = 2,091)

Etobicoke
(Ntest = 6,667)

Scarborough
(Ntest = 8,921)

Model Acc HLA AFR Acc HLA AFR Acc HLA AFR Acc HLA AFR

2Step-Exact 41.97 52.41 33.89 57.05 84.41 29.92 23.23 42.31 39.09 24.18 35.90 45.31
2Step-Spatial-Exact 43.10 54.20 32.28 58.06 85.41 21.60 23.46 44.10 38.81 25.39 37.79 43.12

MoCo-NN 61.69 90.23 14.68 57.68 91.34 17.17 52.03 89.89 12.71 56.16 91.45 17.01
SupCon-NN 70.75 93.41 11.73 61.17 93.40 17.05 64.29 93.59 9.45 65.73 93.38 10.96
OrdCon-NN 71.11 93.96 9.95 60.74 93.93 11.62 64.02 93.98 9.29 65.95 94.54 10.55

AutoLTS-MoCo 72.21 93.70 10.11 61.60 94.02 13.52 64.69 92.94 9.84 64.40 94.05 11.62
AutoLTS-SupCon 73.30 94.16 10.61 62.17 94.38 15.76 64.63 93.42 10.66 65.86 94.37 11.43
AutoLTS-OrdCon 73.41 94.16 10.50 62.31 94.69 15.72 64.69 93.50 9.87 66.04 94.62 10.77

Table 3: Summary of ablation studies.

Con outperforms the simple image classification formula-
tion (Cross-Entropy) in 8 out of 12 scenarios yet is inferior
to AutoLTS in all scenarios. However, we observe that when
there is a significant domain shift from training to test data
(spatial splits), all methods including AutoLTS are more
prone to overfitting the training data, and thus have worse
out-of-sample performance than in random splits.

4.3 Ablation Studies
Next, we present ablation studies using data-availability sce-
nario one to demonstrate the values of our two-step learning
framework, ordinal contrastive learning loss, and the post-
processing module, The results are summarized in Table 3.

The value of the two-step learning framework. We
compare AutoLTS with an alternative approach that replaces
the LTS prediction module with the exact LTS calculation
scheme (2Step-Exact and 2Step-Spatial-Exact). This change
leads to reductions of 6.16–40.83 percentage points in Acc
due to the compounded errors from the first step, highlight-
ing the importance of second-step learning. Moreover, Au-
toLTS outperforms all baselines that predict LTS based only
on image (MoCo-, SupCon-, and OrdCon-NN), demonstrat-
ing the value of incorporating road feature predictions.

The value of ordinal contrastive learning. We com-
pare the three contrastive learning methods using the Au-
toLTS framework and the linear classification protocol (He
et al. 2020). When used to predict LTS without road features
(MoCo-, SupCon-, and OrdCon-NN), OrdCon and SupCon
are competitive in Acc, yet OrdCon constantly achieves
higher HLA and lower AFR because it considers the re-
lationship among LTS labels. This is practically important
because the ability to distinguish between low- and high-
stress roads plays a vital role in most adults’ cycling deci-
sion makings (Furth, Mekuria, and Nixon 2016). When com-
bined with road features, all contrastive learning methods
perform reasonably well. Nevertheless, Auto-OrdCon con-
sistently outperforms others by a meaningful margin.

The value of spatial post-processing. Applying the spa-
tial post-processing technique to road feature predictions
generally leads to an increase of around 1% in road feature
prediction accuracy (presented in Appendix C) which can be
translated into improvements in LTS prediction Acc (2Step-

Exact versus 2Step-Spatial-Exact). While the improvement
seems to be limited, it corresponds to correctly assessing the
LTS of 21–162 road segments in the studied area, which can
have a significant impact on the routing and cycling infras-
tructure planning decisions derived based on the assessment.

5 Conclusion

In this paper, we present a deep learning framework, Au-
toLTS, that uses streetview images to automate cycling
stress assessment. AutoLTS features i) a contrastive learn-
ing approach that learns image representations that preserve
the ordinal relationship among image labels and ii) a post-
processing technique that enforces spatial smoothness into
the predictions. We show that AutoLTS can assist in accu-
rate, timely, and large-scale cycling stress assessment in the
absence of road network data.

Our paper has three limitations, underscoring potential
future research directions. First, we observe performance
degradation when the training and test data have very dif-
ferent label distributions (spatial splits). Future research
may apply domain adaptation methods to boost the per-
formance of AutoLTS in such scenarios. Second, AutoLTS
does not consider the specific needs of downstream appli-
cations. For instance, in cycling route recommendations,
under-estimation of cycling stress may be more harmful
than over-estimation because the former may lead to cycling
routes that exceed cyclists’ stress tolerance and result in in-
creased risks of cycling accidents. In cycling network de-
sign, cycling stress predictions might be more important on
major roads than on side streets because cycling infrastruc-
ture is typically constructed on major roads. Such impacts
may be captured by modifying the loss function to incorpo-
rate decision errors. Finally, all our experiments are based on
a dataset collected in Toronto. Future research may collect a
more comprehensive dataset to further assess the generaliz-
ability of our model. We hope this work will open the door
to using deep learning to support the broader application of
cycling stress assessment and to inform real-world decision
makings that improve transportation safety and efficiency.
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A Proof of Statements
A.1 Proof of Proposition 1
Proof. We have

P (ai|xi, {aj}j 6=i∈I) =
P
(
{aj}j∈J (i)

∣∣xi, ai
)
P (xi, ai)

P
(
{aj}j∈J (i)
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)
P (xi)
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∏
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)
P (xi)

=

∏
j∈J (i) P (aj |ai)P (ai|xi)

P
(
{aj}j∈J (i)

∣∣xi

) .

The first equation follows the definition of conditional
probability. The second equation holds because of the as-
sumptions 1, 2, and 3 presented in Section 3.3. Since the
denominator in the last line is a constant, we have

P
(
ai
∣∣xi, {aj}j∈J (i)

)
∝

∏
j∈J (i)

P (aj |ai)P (ai|xi) (6)

B LTS Calculation Details
We follow Furth, Mekuria, and Nixon (2016) and Imani,
Miller, and Saxe (2019) to calculate the LTS label of ev-
ery road segment in Toronto. The calculation scheme can be
summarized by the following decision rules, which are ap-
plied in sequence.

• Road segments that are multi-use pathways, walkway, or
trails are LTS 1.

• Road segment with cycle tracks (i.e. protected bike lanes)
are LTS 1.

• For road segments with painted bike lanes:
– If the road segment has on-street parking,

* If one lane per direction and motor traffic speed≤ 40
km/h, then LTS 1.

* If one lane per direction and motor traffic speed≤ 48
km/h, then LTS 2.

* If motor traffic speed ≤ 56 km/h, then LTS 3.
* Otherwise, LTS4.

– If the road segment has no on-street parking,

* If one lane per direction and motor traffic speed≤ 48
km/h, then LTS 1.

* If one/two lanes per direction, then LTS 2.
* If motor traffic speed ≤ 56 km/h, then LTS 3
* Otherwise, LTS 4.

• For road segments without cycling infrastructure:
– If motor traffic speed≤ 40 km/h, and≤ 3 lanes in both

directions,

* If daily motor traffc volume ≤ 3000, then LTS 1.
* Otherwise, LTS 2.

– If motor traffic speed≤ 48 km/h, and≤ 3 lanes in both
directions,

* If daily motor traffc volume ≤ 3000, then LTS 2.

* Otherwise, LTS 3.
– If motor traffic speed≤ 40 km/h, and≤ 5 lanes in both

directions, then LTS 3.
– Otherwise, LTS 4.

C Road Feature Prediction Details
C.1 Label Discretization
We discretize all the road features as summarized in Table
4. Threshold values and feature categories are selected fol-
lowing Furth, Mekuria, and Nixon (2016) and Imani, Miller,
and Saxe (2019). All road feature prediction problems are
then formulated as image classfication problems.

C.2 Model Details
We train one ResNet-50 (He et al. 2016) to predict each road
feature based on the input streetview image. We initialize
the model with the weights pre-trained on the ImageNet. We
replace the final layer with a fully connected layer whose
size corresponds to the number of possible discrete labels for
the road feature. We train the model with a standard cross-
entropy loss.

C.3 Prediction Performance
We first present the road feature prediction accuracy under
the random train-test-validation split (Tabel 5). We compare
the performance of Res50 with a naive approach that pre-
dicts road features as the corresponding majority classes ob-
served in the training set. We observe that Res50 provides
improvements of 1.86%-22.31% for all road features except
road direction. This is because the road direction labels are
highly imbalanced with over 94% of the road segments be-
ing bi-directional. The Res50 model is able to identify some
uni-directional road segments at the cost of miss-predicting
some bi-directional road segments as uni-directional. We opt
to use Res50 despite that it has a lower prediction accuracy
than the naive approach because it leads to better prediction
performance for AutoLTS according to our experiments.

We next present the road feature prediction results for all
train-test-validation splits considered (Table 6). The model
performance is similar across different splits, with minor
changes in prediction accuracy due to the changes in label
distributions.

We apply the spatial post-processing module to the traf-
fic speed prediction. As presented in Table 8, applying the
spatial post-processing technique leads to improvements of
1.01–2.05 percentage points in traffic speed prediction accu-
racy, corresponding to 21–162 road segments.

D AutoLTS Training Details
The image encoder is trained using an SGD optimizer with
an initial learning rate of 30, a weight decay of 0.0001, and
a mini-batch size of 256 on an A40 GPU with RAM of 24
GB. The road feature prediction models and the LTS predic-
tion model are trained with an SGD optimizer with an ini-
tial learning rate of 0.0003, a weight decay of 0.0001, and a
mini-batch size of 128 on a P100 GPU with RAM of 12 GB.
These hyper-parameters are chosen based on random search.



Table 4: Road feature discretization.

Road Feature Label Definition

Motor traffic speed

1 ≤ 40 km/h
2 40 – 48 km/h
3 48 – 56 km/h
4 ≥ 56 km/h

Road type
1 Major/minor arterial, arterial ramp
2 Collector, access road, laneway, local road, others
3 Trail, walkway

Number of lanes

1 One lane in both directions
2 Two lanes in both directions
3 Three lanes in both directions
4 Four lanes in both directions
5 More than 5 lanes in both directions

Road direction 1 Unidirectional road
2 Bidirectional road

Cycling infrastructure type

1 Bike Lane
2 Cycle track
3 Multi-use pathway
4 Others or no cycling infrastructure

On-street parking 1 Has on-street parking
2 No on-street parking

Table 5: Road feature prediction accuracy (%) on the ran-
dom test set (Ntest = 5,873). The “Diff” column highlights
the improvement from “Naive” to “Res50”.

Road Feature Res50 Naive Diff.

Road type 89.97 67.66 +22.31
Motor traffic speed 71.28 54.48 +16.80
Motor traffic volume 88.13 70.81 +17.32
Number of lanes 82.66 66.34 +16.32
Cycling infrastructure 95.30 94.35 +0.95
On-street parking 96.05 94.19 +1.86
Road direction 94.04 94.18 -0.14

The model is trained for 100 epochs, which takes roughly 17
hours.

We set l to 2 because, according to the original LTS cal-
culation scheme (Furth, Mekuria, and Nixon 2016), the four
LTS labels can be grouped into low-stress (LTS1 and LTS2)
and high-stress (LTS3 and LTS4). We search for (w1, w2) in
{(1, 0), (0.95, 0.05), (0.90, 0.10), (0.85, 0.15), (0.80, 0.20)}
and evaluate using the linear classification protocol He et al.
(2020) on the validation set. For example, Table 7 presents
the performance of OrdCon-NN under different choices
of (w1, w2). We observe that OrdCon always helps to
improve HLA and AFR, which is unsurprising because
it has an additional term in the loss function to contrast
low-stress and high-stress images. OrdCon also helps to
enhance Acc when (w1, w2) is set to (0.95, 0.05). We use
(w1, w2) = (0.95, 0.05) for all scenarios. Further fine

tuning is possible but is beyond the scope of this work due
to the computational cost.

E Baseline Details
E.1 Supervised Learning
CART In data-availability scenarios 2 and 3, we train a
CART model to predict the LTS of a road segment based
on its available road features. Hyper-parameters are se-
lected using a grid search strategy and evaluated using a 10-
fold cross-validation procedure. We summarize the hyper-
parameters and their candidate values below.

• Splitting criterion: entropy, gini
• Max depth: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
• Minimum sample split: 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 2,

4, 6

Res50 We adapt the ResNet-50 model (He et al. 2016) to
predict the LTS of a road link based on its street-view image
and link features that are available. As illustrated in Figure
6, our model consists of three modules:

• Image encoder. This module extracts useful information
from the street view image and represents it as a 64-
dimensional vector. We implement this module with a
ResNet-50 encoder followed by two fully connected lay-
ers of sizes 128 and 64, respectively.

• Link-feature encoder. This module allows us to incor-
porate link features when they are available. Performing
link feature embedding prevents the prediction module
from being dominated by the image embedding, which is



Table 6: Road feature prediction accuracy (%) under all train-test-validation splits.

Road Feature Random York Etobicoke Scarborough

Road type 89.97 90.34 89.47 88.72
Motor traffic speed 70.19 65.61 59.52 57.35
Number of lanes 82.66 75.32 85.05 88.05
Cycling infrastructure 95.30 96.46 94.59 95.90
One-street parking 96.05 95.36 98.16 99.74
Road direction 94.04 85.75 96.10 99.41

Table 7: The Prediction performance of OrdCon-NN in data-availability scenario one under the random train-test-validation
split with different values of (w1, w2).

(w1, w2) (1.00, 0.00) (0.95, 0.05) (0.90, 0.10) (0.85, 0.15) (0.80, 0.20)

Acc 70.75 71.11 69.92 70.78 70.25
HLA 93.41 93.96 93.50 93.51 93.73
AFR 11.73 9.95 10.72 10.93 10.68

Table 8: Traffic speed prediction accuracy before and after spatial post-processing.

Feature Sub-network Original Spatial

Traffic
Speed

Random
(ntest = 5, 873)

70.19%
(4,122)

+1.29%
(+78)

York
(ntest = 2, 091)

65.61%
(1,372)

+1.01%
(+21)

Etobicoke
(ntest = 6, 667)

59.52%
(3,968)

+2.05%
(+137)

Scarborough
(ntest = 8, 921)

57.47%
(5,127)

+1.82%
(+162)

higher dimensional compared to the original link feature
vector. We implement this module with a fully connected
layer whose input size depends on the dimensionality of
the feature vector and the output size equals 64.

• Prediction. This module takes as inputs the average of
the image embedding and the link-feature embedding
and outputs a four-dimensional vector representing the
probability of the link being classified as LTS1–4, respec-
tively. We implement this module with a fully connected
layer whose input and out sizes are set to 64 and 4, re-
spectively.

Figure 6: Model architecture.

All fully connected layers are implemented with the
ReLU activation. This model is trained with an SGD opti-

mizer with an initial learning rate of 0.0001, a weight decay
of 0.0001, and a mini-batch size of 128 on a P100 GPU.
Hyper-parameters are chosen using random search.

E.2 Contrastive Learning

MoCo We train the image encoder f depicted in Figure 3
to minimize the following loss function:

L = − 1

N

∑
i∈N

1

|K|
log

exp [proj(z̄i)ᵀproj(z̃i′)/τ ]∑
k∈K exp [proj(z̄i)ᵀproj(z̃k)/τ ]

(7)
where i′ is the index of the image view inK that corresponds
to the same original image as view i. We follow He et al.
(2020) to set τ = 0.07. We set the queue length to 25,600
and the mini-batch size to 256, which are the maximum size
that can be fed into an A40 GPU. The image encoder is
trained for 100 epochs, which takes roughly 34 hours. Un-
like SupCon and OrdCon, MoCo is trained on all data (with-
out a train-test-validation split) because it does not utilize
the label information.

SupCon We train the image encoder f depicted in Figure
3 to minimize the following loss function:



L = − 1

N

∑
i∈N

1

|Ki|
∑
j∈Ki

log
exp [proj(z̄i)ᵀproj(z̃j)/τ ]∑

k∈K exp [proj(z̄i)ᵀproj(z̃k)/τ ]

(8)
where Ki = {k ∈ K : yk = yi}. We adopt the same hyper-
parameters as we used for MoCo. We train the model for 100
epochs, which also takes roughly 34 hours for each evalu-
ation scenario. We then select the model that achieves the
lowest validation loss for final evaluation.


